Immersive virtual reality for the rehabilitation of Parkinson's disease: a narrative review

Authors

DOI:

https://doi.org/10.31157/an.v27i4.366

Keywords:

Parkinson's disease, virtual reality, physical exercise, rehabilitation

Abstract

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease globally. Currently, the motor symptoms of PD are treated by combining medication and physiotherapy. This narrative review aims to provide an overview of the use of immersive virtual reality (IVR) in the treatment of motor symptoms in PD. The methodology consisted of a systematic search of scientific articles in PubMed with keywords related to the topic. Although the information on the subject in the scientific literature is limited, the available studies show that rehabilitation strategies that apply virtual reality have a positive effect on distance (p = 0.001), step rate (p = 0.003) and mobility of the upper extremities (p = 0.002) in patients with PD. Likewise, several authors show the potential of IVR to offer patients a motivating and immersive therapy. Thus, immersive virtual reality technology, which is under constant development, could represent a viable strategy for rehabilitation in Parkinson's disease.

References

[1] Saavedra J, Millán P. y Buriticá O. Introducción, epidemiología y diagnóstico de la enfermedad de Parkinson. Acta Neurol Colomb. 2019;35(1): 2-10. https://doi.org/10.22379/24224022244
[2] Carrillo F. Enfermedad de Parkinson y parkinsonismos. Medicine- Programa de Formación Médica Continuada Acreditado. 2019;12(73): 4273–4284. doi:10.1016/j.med.2019.03.002
[3] Martínez-Fernández R, Gasca-Salas C, Sánchez-Ferro Á y Ángel-Obeso J. Actualización en la enfermedad de Parkinson. Rev méd Clín Las Condes. 2016;27(3): 363–379. doi:10.1016/j.rmclc.2016.06.010
[4] Dockx K, Bekkers E M, Van den Bergh V, Ginis P, Rochester L, Hausdorff J M. et al. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev. 2016;12(12): CD010760. https://doi.org/10.1002/14651858.CD010760.pub2
[5] van Nimwegen M, Speelman A D, Hofman-van Rossum E J, Overeem S, Deeg J H D, Borm F G, et al. Physical inactivity in Parkinson's disease. J Neurol. 2011;258(12): 2214-2221. doi:10.1007/s00415-011-6097-7
[6] Miller K, Suárez-Iglesias D, Seijo-Martínez M, y Ayán C. Fisioterapia para la congelación de la marcha en la enfermedad de Parkinson: revisión sistemática y metaanálisis. Rev Neurol. 2020;70(5): 161-170. doi:10.33588/rn.7005.2019417+
[7] Cóndor I, Atencio-Paulino J y Contreras-Cordova, C. Características clínico epidemiológicas de la enfermedad de Parkinson en un hospital nacional de la sierra peruana. Rev Fac Med Hum. 2019;19(4): 14-21. https://dx.doi.org/10.25176/RFMH.v19i4.2342
[8] Martínez-Ramírez D, Rodríguez-Violante M, Velázquez-Ávila E S, Cervantes-Arriaga A, González-Cantú A, Corona-Vázquez T, et al. Incidencia y distribución geográfica de la enfermedad de Parkinson en México. Salud Pública de Mex. 2020;62(6): 873-875. https://doi.org/10.21149/11750
[9] National Institute of Health. Enfermedad de Parkinson: Esperanza en la investigación. Washington DC: National Institute of Neurological Disorders and Stroke. [actualizado 28 de mar 2022; citado 17 abr 2022]. Disponible en: https://tinyurl.com/yckrv6dr
[10] Castro A y Buriticá O. Enfermedad de Parkinson: criterios diagnósticos, factores de riesgo y de progresión, y escalas de valoración del estadio clínico. Acta Neurol Colomb. 2014;30(4): 300-306. Disponible en: https://tinyurl.com/3nk9a3dw
[11] European Parkinson’s Disease Association. Rating scales. Orpington: European Parkinson’s Disease Association. [actualizado 2022; citado 17 abr 2022]. Disponible en: https://www.epda.eu.com/about-parkinsons/symptoms/rating-scales/
[12] Cano de la Cuerda R, Macías A, Sánchez V y Morales, M. Escalas de valoración y tratamiento fisioterápico en la enfermedad de Parkinson. Fisioterapia. 2004;26(4): 201-10.
[13] Oliveira de Carvalho A, Filho A, Murillo-Rodriguez E, Rocha N B, Carta M G, y Machado S. Physical Exercise For Parkinson's Disease: Clinical And Experimental Evidence. Clin. Pract: CP & EMH, 2018;14: 89–98. https://doi.org/10.2174/1745017901814010089
[14] Radhakrishnan D y Goyal V. Parkinson's disease: A review. Neurol India, 2018;66(7): 26-35. doi: 10.4103/0028-3886.226451
[15] Elizondo G, Déctor-Carrillo M A, Martínez-Rodríguez H R, Martínez-de Villarreal L, Esmer-Sánchez C. Genética y la enfermedad de Parkinson: Revisión de actualidades. Med. Univer. 2011;13(51): 96-100. Disponible en: https://tinyurl.com/8cp7uppp
[16] Romo D, Yescas P, López M y Boll M. Factores genéticos de la demencia en la enfermedad de Parkinson (EP). Gac Med Mex. 2015;151: 110-8. Disponible en: https://tinyurl.com/ykyrmnv7
[17] Hindle J. Ageing, neurodegeneration and Parkinson’s disease. Age and Ageing. 2010;39(2): 156-161. doi: 10.1093/ageing/afp223
[18] Kirkwood T. The most pressing problem of our age. BMJ. 2003;326(7402): 1297-9. doi: 10.1136/bmj.326.7402.1297
[19] von Bernhardi R. Mecanismos de Neurotoxicidad en la Enfermedad de Parkinson. Pontificia Universidad Católica de Chile; 2005 [actualizado en 2005; citado 17 abr 2022]. Disopinble en: https://tinyurl.com/2p83bx8s
[20] Gómez-Chavarín M, Roldan-Roldan G, Morales-Espinosa R,Pérez-Soto G y Torner-Aguilar C. Mecanismos fisiopatológicos involucrados en la enfermedad de Parkinson. Arch Neurocien. 2012;17(1): 25-33. Disponible: https://tinyurl.com/2p8ys7x4
[21] Gallardo G, Schluter O y Sudhof T. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nat Neurosci. 2008;11(3): 301-8. doi: 10.1038/nn2058
[22] Reeve A, Simcox E y Turnbull D. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?. Ageing Res Rev. 2014;14(100): 19-30. doi: 10.1016/j.arr.2014.01.004
[23] Ma S Y, Röytt M, Collan Y y Rinne, J O. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol. Appl. Neurobiol. 1999;25(5): 394–399. doi: 10.1046/j.1365-2990.1999.00202.x.
[24] Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 2007;30(5): 244–250. doi: 10.1016/j.tins.2007.03.009.
[25] Anderson C C, Aivazidis S, Kuzyk C L, Jain A y Roede J. Acute Maneb Exposure Significantly Alters Both Glycolysis and Mitochondrial Function in Neuroblastoma Cells. Toxicol Sci. 2018;165(1): 61-73. https://doi.org/10.1093/toxsci/kfy116
[26] Ortiz G G, Pacheco F P, Macías-Islas M A, Jiménez-Gil, F J, Miranda-Díaz A G, Flores-Alvarado L J, et al. Toxicidad de plaguicidas y su asociación con la enfermedad de Parkinson. Arch Neurocien. 2011;16(1): 33-39. Disponible en: https://tinyurl.com/yc68dchy
[27] Ray B, Mahalakshmi AM, Tuladhar S, et al. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol. 2021;9: 673395. doi:10.3389/fcell.2021.673395
[28] Lashuel H A, Hartley D, Petre B M, Walz T y Lansbury P T Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 2002;418(6895): 291. https://doi.org/10.1038/418291a
[29] Armstrong M J y Okun M S. Diagnosis and treatment of Parkinson disease. JAMA. 2019;323(6): 548-560. doi:10.1001/jama.2019.22360
[30] Marosi K, Bori Z, Hart N, Sárga L, Koltai E, Radák Z y Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience. 2012;226: 21-8. doi: 10.1016/j.neuroscience.2012.09.001.
[31] Xu X, Fu Z, y Le W. Exercise and Parkinson’s disease. Int Rev Neurobiol. 2019;147: 45-74. doi:10.1016/bs.irn.2019.06.003
[32] Mak M K, Wong-Yu I S, Shen X y Chung C L. Long term effects of exercise and physical therapy in people with Parkinson disease. Nature Reviews. Neurology, 2017;13(11), 689-703.
[33] Georgiev D D, Georgieva I, Gong Z, Nanjappan V y Georgiev G V. Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci. 2021;11(2): 221. https://doi.org/10.3390/brainsci11020221
[34] Canning C G, Allen N E, Nackaerts E, Paul S S, Nieuwboer A y Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol. 2020;16: 409–425. https://doi.org/10.1038/s41582-020-0370-2
[35] Brandín-De la Cruz N, Secorro S, Calvo Y, Benyoucef P, Herrero, P, y Bellosta-López P. Entrenamiento antigravitatorio e inmersivo de realidad virtual para la rehabilitación de la marcha en la enfermedad de Parkinson: estudio piloto y de viabilidad. Rev Neurol. 2020;71: 447-454. doi: https://doi.org/10.33588/rn.7112.2020352
[36] Riva G, Wiederhold B K y Mantovani F. (2019). Neuroscience of Virtual Reality: From Virtual Exposure to Embodied Medicine. Cyberpsychol Behav Soc Netw. 2019;22(1): 82–96. https://doi.org/10.1089/cyber.2017.29099.gri
[37] Tieri G, Morone G, Paolucci S y Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018;15(2): 107–117. doi:10.1080/17434440.2018.1425613
[38] Weber H, Barr C, Gough C, van den Berg M. How Commercially Available Virtual Reality-Based Interventions Are Delivered and Reported in Gait, Posture, and Balance Rehabilitation: A Systematic Review. Phys Ther. 2020;100(10): 1805-1815. doi: 10.1093/ptj/pzaa123.

Published

2022-08-08

How to Cite

Rojas Bustamante, E., & Adalid Peralta, L. V. (2022). Immersive virtual reality for the rehabilitation of Parkinson’s disease: a narrative review. Archivos De Neurociencias, 27(4). https://doi.org/10.31157/an.v27i4.366

Issue

Section

Evidence synthesis