Downregulation of the GABAA receptor β2 subunit in a rat model of autism
DOI:
https://doi.org/10.31157/an.v1iInpress.645Keywords:
GABA, GABAA, Autism, Valproic acid, GARB2Abstract
Introduction: Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain, and GABA type A receptor (GABAA) activation mediates fast inhibitory actions. Numerous studies have shown that individual with autism spectrum disorder (ASD) exhibit abnormalities in the expression of GABAA receptors in various brain areas. Additionally, animal models of ASD have suggested alterations in GABAergic neurotransmission and a dysregulation in the balance between inhibitory and excitatory systems. Objective: We investigated the immunolabeling of the GABAA receptor β2 subunit (GARB2) in the hippocampus, the amygdala, and thalamus of infant rats prenatally exposed to valproic acid (VPA) as an ASD model. Methods: Pregnant females were injected with VPA (600mg/Kg, i.p.) during the twelfth embryonic day; control rats were injected with saline. On the fourteen-postnatal-day, rats from both experimental groups were anesthetized, transcardially perfused with 0.9% NaCl and 4% paraformaldehyde, and sequential coronal brain sections (40μm thickness) were obtained. Immunohistochemistry was performed to detect GARB2 and the relative optical density (OD) of expression was analyzed. Results: Our data showed a statistically significant downregulation of GARB2 in the lateral amygdaloid nucleus, as well as in the ventral and lateral thalamic nuclei when compared to control rats. No statistically significant differences were detected in the hippocampus. Discussion: Our findings suggest that prenatal exposure to VPA reduces GARB2 expression in limbic brain regions involved in social-emotional behaviors, like previous reports in individuals with ASD. Conclusion These results support for the involvement of the GABAergic system in the pathogenesis of ASD.
References
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. APA Press; Washington, DC: 2013. DOI: https://doi.org/10.1176/appi.books.9780890425596
Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ. 2021; 70:1-16. DOI: 10.15585/mmwr.ss7011a1 DOI: https://doi.org/10.15585/mmwr.ss7011a1
Hassan TH, Abdelrahman HM, Abdel Fattah NR, El-Masry NM, Hashim HM, El-Gerby KM, et al. Blood and brain glutamate levels in children with autistic disorder. Res Autism Spectr Disord. 2013; 7:541-548. DOI: 10.1016/j.rasd.2012.12.005 DOI: https://doi.org/10.1016/j.rasd.2012.12.005
Page LA, Daly E, Schmitz N, Simmons A, Toal F, Deeley Q, et al. In vivo 1H- magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am J Psychiatry. 2006; 163:2189–92. DOI: 10.1176/appi.ajp.163.12.2189 DOI: https://doi.org/10.1176/ajp.2006.163.12.2189
Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, et al. Increase serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30:1472-7. DOI: 10.1016/j.pnpbp.2006.06.013 DOI: https://doi.org/10.1016/j.pnpbp.2006.06.013
Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, et al. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLOS One. 2011; 6: e25340. DOI: 10.1371/journal.pone.0025340 DOI: https://doi.org/10.1371/journal.pone.0025340
Ansary El, Ayadhi Al. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2014; 11:1-189. DOI: 10.1186/s12974-014-0189-0 DOI: https://doi.org/10.1186/s12974-014-0189-0
Fatemi SH, Halt A, Stary J, Kanodia R, Schulz SC, Realmuto G. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biol Psychiatry. 2002; 52:805–810. DOI: 10.1016/s0006-3223(02)01430-0 DOI: https://doi.org/10.1016/S0006-3223(02)01430-0
Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. S GABAA receptor downregulation in brains of subjects with autism. J Autism Dev Disord. 2009; 39:223-230. DOI: 10.1007/s10803-008-0646-7 DOI: https://doi.org/10.1007/s10803-008-0646-7
Fatemi SH, Reutiman T, Folsom TD, Rustan OG, Rooney RJ, Thuras PD. 2014. Downregulation of GABAA Receptor Protein Subunits α6, β2, δ, ε, ????2, θ, and ρ2 in Superior Frontal Cortex of Subjects with Autism. J Autism Dev Disord. 2014; 44:1833-1845. DOI: 10.1007/s10803-014-2078-x DOI: https://doi.org/10.1007/s10803-014-2078-x
Harada M, Taki MM, Nose Y, Kubo H, Mori K, Nishitani H, et al. Non-Invasive Evaluation of the GABAergic/Glutamatergic System in Autistic Patients Observed by MEGA-Editing Proton MR Spectroscopy Using a Clinical 3 Tesla Instrument. J Autism Dev Disord. 2011; 41:447–454. DOI: 10.1007/s10803-010-1065-0 DOI: https://doi.org/10.1007/s10803-010-1065-0
Bormann J. The ‘ABC’ of GABA receptors. Trends Pharmacol Sci. 2000;21:16-9. DOI: 10.1016/s0165-6147(99)01413-3 DOI: https://doi.org/10.1016/S0165-6147(99)01413-3
Olsen RW, Sieghart W. International Union of Pharmacology. Subtypes of gamma-aminobutyric acid (A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008; 60:243-60. DOI: 10.1124/pr.108.00505 DOI: https://doi.org/10.1124/pr.108.00505
Olsen RW, Sieghart W. GABAA Receptors: Subtypes Provide Diversity of Function and Pharmacology. Neuropharmacology. 2009; 56:141–148. DOI: 10.1016/j.neuropharm.2008.07.045 DOI: https://doi.org/10.1016/j.neuropharm.2008.07.045
Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(A) receptors: immunocytochemical distribution of 13 sub-units in the adult rat brain. Neuroscience. 2000; 101:815-50. DOI: 10.1016/s0306-4522(00)00442-5 DOI: https://doi.org/10.1016/S0306-4522(00)00442-5
Nutt DJ. GABAA Receptors: Subtypes, Regional Distribution, and Function. J Clin Sleep Med. 2006; 2:S7-11. DOI: https://doi.org/10.5664/jcsm.26525
Whiting PJ, Bonnert TP, McKernan RM, Farrar S, Le Bourdellès B, Heavens RP, et al. Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann N Y Acad Sci. 1999; 868:645-53. DOI: 10.1111/j.1749-6632.1999.tb11341.x DOI: https://doi.org/10.1111/j.1749-6632.1999.tb11341.x
Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and Distribution of Hippocampal Neurotransmitter Receptors in Autism: An Autoradiographic Study. J Autism Dev Disord. 2001; 31;537-543. DOI: 10.1023/a:1013238809666 DOI: https://doi.org/10.1023/A:1013238809666
Oblak A, Gibbs TT, Blatt GJ. Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res. 2009: 2:205-219. DOI: 10.1002/aur.88 DOI: https://doi.org/10.1002/aur.88
Oblak AL, Gibbs T, Blatt GJ. Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res. 2011; 1380: 218-228. DOI: 10.1016/j.brainres.2010.09.021 DOI: https://doi.org/10.1016/j.brainres.2010.09.021
Ma DQ, Whitehead PL. Menold MM, Martin ER, Ashley-Koch AE, Mei H, et al. Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. Am. J. Hum. Genet. 2005; 77:377-388. DOI: 10.1086/433195 DOI: https://doi.org/10.1086/433195
Lamb J, Moore J, Bailey A, Monaco A. Autism: recent molecular genetic advances. Hum Mol Genet. 2000; 9:861-868. DOI: 10.1093/hmg/9.6.861 DOI: https://doi.org/10.1093/hmg/9.6.861
Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular Structure and Physiological Functions of GABAB Receptors. Physiol Rev. 2004; 84:835-867. DOI: 10.1152/physrev.00036.2003 DOI: https://doi.org/10.1152/physrev.00036.2003
Lin HC, Gean PW, Wang CC, Chan YH, Chen PS. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model, PLoS One. 2013; 8: e55248. DOI: 10.1371/journal.pone.0055248 DOI: https://doi.org/10.1371/journal.pone.0055248
Kim KC, Kim P, Go HS, Choi CS, Park JH, Kimm HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in prenatal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013; 124:832-843. DOI: 10.1111/jnc.12147 DOI: https://doi.org/10.1111/jnc.12147
Bristot Silvestrin R, Bambini-Junior V, Galland F, Daniele Bobermim L, Quincozes-Santos A, Torres Abib R, et al. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res. 2013; 1495:52-60. DOI: 10.1016/j.brainres.2012.11.048 DOI: https://doi.org/10.1016/j.brainres.2012.11.048
Banerjee A, García-Oscos F, Roychowdhury S, Galindo LC, Hall S, Kilgard MP, et al. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol. 2013 Jul;16(6):1309-18. DOI: 10.1017/S1461145712001216 DOI: https://doi.org/10.1017/S1461145712001216
Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Behav Brain Res. 2021; 403:113094. DOI: 10.1016/j.bbr.2020.113094 DOI: https://doi.org/10.1016/j.bbr.2020.113094
Amaral D, Schumann C, Nordahl C. Neuroanatomy of autism. Trends Neurosci. 2008; 31:137-145. DOI: doi.org/10.1016/j.tins.2007.12.005 DOI: https://doi.org/10.1016/j.tins.2007.12.005
Puig-Lagunes AA, Manzo J, Beltrán-Parrazal L, Morgado-Valle C, Toledo-Cárdenas R, López-Meraz ML. Pentylenetetrazole-induced seizures in developing rats prenatally exposed to valproic acid. PeerJ. 2016; 4:e2709. DOI: 10.7717/peerj.2709 DOI: https://doi.org/10.7717/peerj.2709
Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018.
Richards JG. Schoch P. Haring P. Takacs B. Möhler H. Resolving GABA/Benzodiazepine Receptors: Cellular and Subcellular Localization in the CNS with Monoclonal Antibodies. J Neurosci. 1987; 7:1866-1886. DOI: 10.1523/JNEUROSCI.07-06-01866.1987 DOI: https://doi.org/10.1523/JNEUROSCI.07-06-01866.1987
Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W, et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry. 2018; 8(1):106. DOI: 10.1038/s41398-018-0155-1 DOI: https://doi.org/10.1038/s41398-018-0155-1
Cochran DM, Sikoglu EM, Hodge SM, Edden RA, Foley A, Kennedy DN, et al. Relationship among Glutamine, γ-Aminobutyric Acid, and Social Cognition in Autism Spectrum Disorders. J Child Adolesc Psychopharmacol. 2015; 25:314-322. DOI:10.1089/cap.2014.0112 DOI: https://doi.org/10.1089/cap.2014.0112
Horder J, Andersson M, Mendez M, Singh N, Tangen Ä, Lundberg J, et al. GABAA receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Sci Transl Med. 2018; 10: eaam8434. DOI: 10.1126/scitranslmed.aam8434 DOI: https://doi.org/10.1126/scitranslmed.aam8434
Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A Developmental Study of Abnormal Behaviors and Altered GABAergic Signaling in the VPA-Treated Rat Model of Autism. Front Behav Neurosci. 2018; 12:182. DOI: 10.3389/fnbeh.2018.00182 DOI: https://doi.org/10.3389/fnbeh.2018.00182
Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M, et al. Evaluation of the GABAergic nervous system in autistic brain: 123I-iomazenil SPECT study. Brain Dev. 2021; 34:648–654. DOI: 10.1016/j.braindev.2011.09.001 DOI: https://doi.org/10.1016/j.braindev.2011.10.007
Bambini-Junior V, Rodrigues L, Behr GA, Moreira JC. Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res. 2011; 1408:8-16. DOI: 10.1016/j.brainres.2011.06.015 DOI: https://doi.org/10.1016/j.brainres.2011.06.015
Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 2005; 30:80-89. DOI: 10.1038/sj.npp.1300518 DOI: https://doi.org/10.1038/sj.npp.1300518
Bertelsen F, Møller A, Folloni D, Drasbek KR, Scheel-Krüger J, Landau AM. Increased GABAA receptor binding in amygdala after prenatal administration of valproic acid to rats. Acta Neuropsychiatr. 2017; 29:309-314. DOI: 10.1017/neu.2016.59 DOI: https://doi.org/10.1017/neu.2016.59
Pagani JH, Zhao M, Cui Z, Avram SK, Caruana DA, Dudek SM, et al. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry. 2014; 20:490-9. DOI: 10.1038/mp.2014.47 DOI: https://doi.org/10.1038/mp.2014.47
Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014; 508:88–92. DOI: 10.1038/nature13028 DOI: https://doi.org/10.1038/nature13028
Stevenson EL, Caldwell HK. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosci. 2014; 40: 3294-301. DOI: 10.1111/ejn.12689 DOI: https://doi.org/10.1111/ejn.12689
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
September 2022-present © Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
January-September 2022 © The authors. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
January 2014-December 2021 © Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.