SOMATOMEDIN C (IGF-1) IN BRAIN TRAUMA: POTENTIAL EFFECT ON NEUROPROTECTION

Authors

DOI:

https://doi.org/10.31157/an.v29i2.454

Keywords:

Brain Trauma, C Somatomedin, Insulin-like Growth Factor 1, Traumatic brain lesion

Abstract

In recent years, through experimental studies, the effects of various neurotransmitters, as well as proteins, enzymes, and hormones involved in the inflammatory response during and after traumatic brain injury, have been investigated in depth, finding a substance called insulin-like growth factor type I (IGF-1), this protein, has shown to be important in processes of neuroprotection, synaptogenesis, myelination, and prevention of apoptosis, among others.

This article aims to clarify the role of Somatomedin C or type I insulin-like factor and its potential neuromodulatory function after head trauma. Factors such as age, sex, physical activity, diet, and the influence of other hormones have been related to the brain's levels and functioning of somatomedin C. IGF-1 receptors are found in higher concentration in some specific regions of the nervous system where neuronal tissue is more susceptible and have binding proteins that regulate the degradation of this substance, which in inflammatory conditions such as brain trauma has been shown to promote angiogenesis and attenuate the production of proinflammatory cytokines.

Author Biographies

Luis Rafael Moscote Salazar, Latin American Council of Neurointensivism, Bogotá, Colombia.

Latinamerican Council of Neurocritical Care (CLaNi) Bogota, Colombia. University of Cartagena Cartagena, Colombia. Member of Federation of European Neuroscience Societies: Brussels, BE

Juan Sebastian Reyes Bello, Fundación Universitaria Sanitas

Fundación Universitaria Sanitas Bogotá, Colombia

Juan Jose Beltran Ruiz, Federico Lleras Acosta Hospital, Emergency Department and Hospitalization Ibagué, Colombia

Universidad del Tolima, Ibagué, Colombia.

Claudia Marcela Restrepo Lugo, Federico Lleras Acosta Hospital, Neurosurgery service, Ibagué, Colombia

Universidad Militar Nueva Granada, Bogotá Colombia.

Katherine Garzón Gonzales, Federico Lleras Acosta Hospital, Emergency Department and Hospitalization Ibagué, Colombia

Universidad de Manizales, Colombia.

References

Madathil SK, Saatman KE. IGF-1/IGF-R Signaling in Traumatic Brain Injury: Impact on Cell Survival, Neurogenesis, and Behavioral Outcome. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Frontiers in Neuroengineering. Boca Raton (FL)2015. https://www.ncbi.nlm.nih.gov/pubmed/26269893

Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761-6. https://doi.org/10.1172/JCI29063 DOI: https://doi.org/10.1172/JCI29063

Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63(7):2232-43. https://doi.org/10.2337/db14-0568 DOI: https://doi.org/10.2337/db14-0568

Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol. 2009;40(3):195-215. https://doi.org/10.1007/s12035-009-8081-0 DOI: https://doi.org/10.1007/s12035-009-8081-0

Loprinzi PD. IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiol (Oxf). 2019;226(1):e13154. https://doi.org/10.1111/apha.13154 DOI: https://doi.org/10.1111/apha.13154

Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc. 2017;65(4):827-32. https://doi.org/10.1111/jgs.14722 DOI: https://doi.org/10.1111/jgs.14722

Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. Geroscience. 2020;42(1):141-58. https://doi.org/10.1007/s11357-019-00139-2 DOI: https://doi.org/10.1007/s11357-019-00139-2

Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci. 2017;18(11). https://doi.org/10.3390/ijms18112441 DOI: https://doi.org/10.3390/ijms18112441

Anderson MF, Åberg MAI, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Developmental Brain Research. 2002;134(1):115-22. https://doi.org/10.1016/S0165-3806(02)00277-8 DOI: https://doi.org/10.1016/S0165-3806(02)00277-8

Karelina K, Weil ZM. Neuroenergetics of traumatic brain injury. Concussion. 2016;1(2):CNC9. https://doi.org/10.2217/cnc.15.9 DOI: https://doi.org/10.2217/cnc.15.9

De Paula ML, Cui QL, Hossain S, Antel J, Almazan G. The PTEN inhibitor bisperoxovanadium enhances myelination by amplifying IGF-1 signaling in rat and human oligodendrocyte progenitors. Glia. 2014;62(1):64-77. https://doi.org/10.1002/glia.22584 DOI: https://doi.org/10.1002/glia.22584

Siesjö BK. Basic mechanisms of traumatic brain damage. Annals of Emergency Medicine. 1993;22(6):959-69. https://doi.org/10.1016/S0196-0644(05)82736-2 DOI: https://doi.org/10.1016/S0196-0644(05)82736-2

Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35-43. https://doi.org/10.1016/j.expneurol.2012.01.013 DOI: https://doi.org/10.1016/j.expneurol.2012.01.013

Hatton J, Rapp RP, Kudsk KA, Brown RO, Luer MS, Bukar JG, et al. Intravenous insulin-like growth factor-I (IGF-I) in moderate-to-severe head injury: a phase II safety and efficacy trial. J Neurosurg. 1997;86(5):779-86. https://doi.org/10.3171/jns.1997.86.5.0779 DOI: https://doi.org/10.3171/jns.1997.86.5.0779

Rockich KT, Hatton JC, Kryscio RJ, Young BA, Blouin RA. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy. 1999;19(12):1432-6. https://doi.org/10.1592/phco.19.18.1432.30891 DOI: https://doi.org/10.1592/phco.19.18.1432.30891

Schober ME, Block B, Beachy JC, Statler KD, Giza CC, Lane RH. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury. J Neurotrauma. 2010;27(11):2011-20. https://doi.org/10.1089/neu.2009.1226 DOI: https://doi.org/10.1089/neu.2009.1226

Madathil SK, Evans HN, Saatman KE. Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotrauma. 2010;27(1):95-107. https://doi.org/10.1089/neu.2009.1002 DOI: https://doi.org/10.1089/neu.2009.1002

Littlejohn EL, Scott D, Saatman KE. Insulin-like growth factor-1 overexpression increases long-term survival of posttrauma-born hippocampal neurons while inhibiting ectopic migration following traumatic brain injury. Acta Neuropathol Commun. 2020;8(1):46. https://doi.org/10.1186/s40478-020-00925-6 DOI: https://doi.org/10.1186/s40478-020-00925-6

Hollis ER, 2nd, Lu P, Blesch A, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol. 2009;215(1):53-9. https://doi.org/10.1016/j.expneurol.2008.09.014 DOI: https://doi.org/10.1016/j.expneurol.2008.09.014

Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol. 2014;73(8):734-46. https://doi.org/10.1097/nen.0000000000000092 DOI: https://doi.org/10.1097/NEN.0000000000000092

Rubovitch V, Shachar A, Werner H, Pick CG. Does IGF-1 administration after a mild traumatic brain injury in mice activate the adaptive arm of ER stress? Neurochemistry International. 2011;58(4):443-6. https://doi.org/10.1016/j.neuint.2011.01.009 DOI: https://doi.org/10.1016/j.neuint.2011.01.009

Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci U S A. 2000;97(18):10236-41. https://doi.org/10.1073/pnas.170008497 DOI: https://doi.org/10.1073/pnas.170008497

Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Experimental Neurology. 2004;186(2):221-34. https://doi.org/10.1016/j.expneurol.2003.12.004 DOI: https://doi.org/10.1016/j.expneurol.2003.12.004

Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. Biochemistry insights. 2019;12:1178626419842176. https://doi.org/10.1177/1178626419842176 DOI: https://doi.org/10.1177/1178626419842176

Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, et al. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Frontiers in endocrinology. 2020;11:606089. https://doi.org/10.3389/fendo.2020.606089 DOI: https://doi.org/10.3389/fendo.2020.606089

Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A. 2019;116(13):6379-84. https://doi.org/10.1073/pnas.1817391116 DOI: https://doi.org/10.1073/pnas.1817391116

Jagua A, Marín RA, Granados LA, Ávila V. Insulina cerebral. Colombia Médica. 2008;39:107-16. https://doi.org/10.24875/CIRU.18000572 DOI: https://doi.org/10.24875/CIRU.18000572

Bowman CE, Scafidi J, Scafidi S. Metabolic perturbations after pediatric TBI: It's not just about glucose. Exp Neurol. 2019;316:74-84. https://doi.org/10.1016/j.expneurol.2019.03.018 DOI: https://doi.org/10.1016/j.expneurol.2019.03.018

Zhu W, Fan Y, Hao Q, Shen F, Hashimoto T, Yang G-Y, et al. Postischemic IGF-1 Gene Transfer Promotes Neurovascular Regeneration after Experimental Stroke. Journal of Cerebral Blood Flow & Metabolism. 2009;29(9):1528-37. https://doi.org/10.1038/jcbfm.2009.75 DOI: https://doi.org/10.1038/jcbfm.2009.75

De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Moens M, Wilczak N, et al. Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke. 2011;42(8):2180-5. https://doi.org/10.1161/strokeaha.110.600783 DOI: https://doi.org/10.1161/STROKEAHA.110.600783

Agha A, Thompson CJ. Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf). 2006;64(5):481-8. https://doi.org/10.1111/j.1365-2265.2006.02517.x DOI: https://doi.org/10.1111/j.1365-2265.2006.02517.x

Li H, Kong R, Wan B, Yang L, Zhang S, Cao X, et al. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sciences. 2020;263:118572. https://doi.org/10.1016/j.lfs.2020.118572 DOI: https://doi.org/10.1016/j.lfs.2020.118572

Carlson SW, Saatman KE. Central Infusion of Insulin-Like Growth Factor-1 Increases Hippocampal Neurogenesis and Improves Neurobehavioral Function after Traumatic Brain Injury. J Neurotrauma. 2018;35(13):1467-80. https://doi.org/10.1089/neu.2017.5374 DOI: https://doi.org/10.1089/neu.2017.5374

Dupraz S, Grassi D, Karnas D, Nieto Guil AF, Hicks D, Quiroga S. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons. PLoS One. 2013;8(1):e54462. https://doi.org/10.1371/journal.pone.0054462 DOI: https://doi.org/10.1371/journal.pone.0054462

Özdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neuroscience. 2006;9(11):1371-81. https://doi.org/10.1038/nn1789 DOI: https://doi.org/10.1038/nn1789

Iwai K, Nakagawa T, Endo T, Matsuoka Y, Kita T, Kim T-S, et al. Cochlear Protection by Local Insulin-Like Growth Factor-1 Application Using Biodegradable Hydrogel. The Laryngoscope. 2006;116(4):529-33. https://doi.org/10.1097/01.mlg.0000200791.77819.eb DOI: https://doi.org/10.1097/01.mlg.0000200791.77819.eb

Hatton J, Kryscio R, Ryan M, Ott L, Young B. Systemic metabolic effects of combined insulin-like growth factor–I and growth hormone therapy in patients who have sustained acute traumatic brain injury. Journal of Neurosurgery JNS. 2006;105(6):843-52. https://doi.org/10.3171/jns.2006.105.6.843 DOI: https://doi.org/10.3171/jns.2006.105.6.843

Anderson LJ, Tamayose JM, Garcia JM. Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Molecular and Cellular Endocrinology. 2018;464:65-74. https://doi.org/10.1016/j.mce.2017.06.010 DOI: https://doi.org/10.1016/j.mce.2017.06.010

Campassi ML, Repetto FG, Banegas Litardo DM, Castor R, Gómez G, Tiseyra B, et al. Incidence and determinats of augmented renal clearance in traumatic brain injury: A prospective observational study. Journal of Critical Care. 2022;70:154065. https://doi.org/10.1016/j.jcrc.2022.154065 DOI: https://doi.org/10.1016/j.jcrc.2022.154065

Images references

Images with original authorship using Reactome tools, consult:

Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, et al. Reactome enhanced pathway visualization. Bioinformatics. 2017;33(21):3461-7. https://doi.org/10.1093/bioinformatics/btx441 DOI: https://doi.org/10.1093/bioinformatics/btx441

Additional Files

Published

2023-03-26

How to Cite

Moscote Salazar, L. R., Reyes Bello, J. S., Beltran Ruiz, J. J., Restrepo Lugo, C. M., & Garzón Gonzales, K. (2023). SOMATOMEDIN C (IGF-1) IN BRAIN TRAUMA: POTENTIAL EFFECT ON NEUROPROTECTION. Archivos De Neurociencias, 29(2). https://doi.org/10.31157/an.v29i2.454

Issue

Section

Evidence synthesis