Brain Trauma, C Somatomedin, Insulin-like Growth Factor 1, Traumatic brain lesion


In recent years, through experimental studies, the effects of various neurotransmitters, as well as proteins, enzymes, and hormones involved in the inflammatory response during and after traumatic brain injury, have been investigated in depth, finding a substance called insulin-like growth factor type I (IGF-1), this protein, has shown to be important in processes of neuroprotection, synaptogenesis, myelination, and prevention of apoptosis, among others.

This article aims to clarify the role of Somatomedin C or type I insulin-like factor and its potential neuromodulatory function after head trauma. Factors such as age, sex, physical activity, diet, and the influence of other hormones have been related to the brain's levels and functioning of somatomedin C. IGF-1 receptors are found in higher concentration in some specific regions of the nervous system where neuronal tissue is more susceptible and have binding proteins that regulate the degradation of this substance, which in inflammatory conditions such as brain trauma has been shown to promote angiogenesis and attenuate the production of proinflammatory cytokines.

Author Biographies

Luis Rafael Moscote Salazar

Latinamerican Council of Neurocritical Care (CLaNi) Bogota, Colombia. University of Cartagena Cartagena, Colombia. Member of Federation of European Neuroscience Societies: Brussels, BE

Juan Sebastian Reyes Bello, Fundación Universitaria Sanitas

Fundación Universitaria Sanitas Bogotá, Colombia

Juan Jose Beltran Ruiz

Universidad del Tolima, Ibagué, Colombia.

Claudia Marcela Restrepo Lugo

Universidad Militar Nueva Granada, Bogotá Colombia.

Katherine Garzón Gonzales

Universidad de Manizales, Colombia.


Madathil SK, Saatman KE. IGF-1/IGF-R Signaling in Traumatic Brain Injury: Impact on Cell Survival, Neurogenesis, and Behavioral Outcome. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Frontiers in Neuroengineering. Boca Raton (FL)2015.

Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761-6.

Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63(7):2232-43.

Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol. 2009;40(3):195-215.

Loprinzi PD. IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiol (Oxf). 2019;226(1):e13154.

Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc. 2017;65(4):827-32.

Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. Geroscience. 2020;42(1):141-58.

Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci. 2017;18(11).

Anderson MF, Åberg MAI, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Developmental Brain Research. 2002;134(1):115-22.

Karelina K, Weil ZM. Neuroenergetics of traumatic brain injury. Concussion. 2016;1(2):CNC9.

De Paula ML, Cui QL, Hossain S, Antel J, Almazan G. The PTEN inhibitor bisperoxovanadium enhances myelination by amplifying IGF-1 signaling in rat and human oligodendrocyte progenitors. Glia. 2014;62(1):64-77.

Siesjö BK. Basic mechanisms of traumatic brain damage. Annals of Emergency Medicine. 1993;22(6):959-69.

Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35-43.

Hatton J, Rapp RP, Kudsk KA, Brown RO, Luer MS, Bukar JG, et al. Intravenous insulin-like growth factor-I (IGF-I) in moderate-to-severe head injury: a phase II safety and efficacy trial. J Neurosurg. 1997;86(5):779-86.

Rockich KT, Hatton JC, Kryscio RJ, Young BA, Blouin RA. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy. 1999;19(12):1432-6.

Schober ME, Block B, Beachy JC, Statler KD, Giza CC, Lane RH. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury. J Neurotrauma. 2010;27(11):2011-20.

Madathil SK, Evans HN, Saatman KE. Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotrauma. 2010;27(1):95-107.

Littlejohn EL, Scott D, Saatman KE. Insulin-like growth factor-1 overexpression increases long-term survival of posttrauma-born hippocampal neurons while inhibiting ectopic migration following traumatic brain injury. Acta Neuropathol Commun. 2020;8(1):46.

Hollis ER, 2nd, Lu P, Blesch A, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol. 2009;215(1):53-9.

Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol. 2014;73(8):734-46.

Rubovitch V, Shachar A, Werner H, Pick CG. Does IGF-1 administration after a mild traumatic brain injury in mice activate the adaptive arm of ER stress? Neurochemistry International. 2011;58(4):443-6.

Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci U S A. 2000;97(18):10236-41.

Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Experimental Neurology. 2004;186(2):221-34.

Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. Biochemistry insights. 2019;12:1178626419842176.

Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, et al. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Frontiers in endocrinology. 2020;11:606089.

Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A. 2019;116(13):6379-84.

Jagua A, Marín RA, Granados LA, Ávila V. Insulina cerebral. Colombia Médica. 2008;39:107-16.

Bowman CE, Scafidi J, Scafidi S. Metabolic perturbations after pediatric TBI: It's not just about glucose. Exp Neurol. 2019;316:74-84.

Zhu W, Fan Y, Hao Q, Shen F, Hashimoto T, Yang G-Y, et al. Postischemic IGF-1 Gene Transfer Promotes Neurovascular Regeneration after Experimental Stroke. Journal of Cerebral Blood Flow & Metabolism. 2009;29(9):1528-37.

De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Moens M, Wilczak N, et al. Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke. 2011;42(8):2180-5.

Agha A, Thompson CJ. Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf). 2006;64(5):481-8.

Li H, Kong R, Wan B, Yang L, Zhang S, Cao X, et al. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sciences. 2020;263:118572.

Carlson SW, Saatman KE. Central Infusion of Insulin-Like Growth Factor-1 Increases Hippocampal Neurogenesis and Improves Neurobehavioral Function after Traumatic Brain Injury. J Neurotrauma. 2018;35(13):1467-80.

Dupraz S, Grassi D, Karnas D, Nieto Guil AF, Hicks D, Quiroga S. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons. PLoS One. 2013;8(1):e54462.

Özdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neuroscience. 2006;9(11):1371-81.

Iwai K, Nakagawa T, Endo T, Matsuoka Y, Kita T, Kim T-S, et al. Cochlear Protection by Local Insulin-Like Growth Factor-1 Application Using Biodegradable Hydrogel. The Laryngoscope. 2006;116(4):529-33.

Hatton J, Kryscio R, Ryan M, Ott L, Young B. Systemic metabolic effects of combined insulin-like growth factor–I and growth hormone therapy in patients who have sustained acute traumatic brain injury. Journal of Neurosurgery JNS. 2006;105(6):843-52.

Anderson LJ, Tamayose JM, Garcia JM. Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Molecular and Cellular Endocrinology. 2018;464:65-74.

Campassi ML, Repetto FG, Banegas Litardo DM, Castor R, Gómez G, Tiseyra B, et al. Incidence and determinats of augmented renal clearance in traumatic brain injury: A prospective observational study. Journal of Critical Care. 2022;70:154065.

Images references

Images with original authorship using Reactome tools, consult:

Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, et al. Reactome enhanced pathway visualization. Bioinformatics. 2017;33(21):3461-7.

Additional Files



How to Cite

Luis Rafael Moscote Salazar, Reyes Bello, J. S., Juan Jose Beltran Ruiz, Claudia Marcela Restrepo Lugo, & Katherine Garzón Gonzales. (2023). SOMATOMEDIN C (IGF-1) IN BRAIN TRAUMA: POTENTIAL EFFECT ON NEUROPROTECTION. Archivos De Neurociencias, 1(Inpress). Retrieved from



Evidence synthesis