Evaluation of the antioxidant effect of olanzapine in combination with N Acetyl Cysteine in a mouse model of schizophrenia induced by MK-801.
DOI:
https://doi.org/10.31157/an.v28i3.399Keywords:
Modelo de esquizofrenia; MK-801; Olanzapina, N-acetil Cisteína; Lipoperoxidación; Glutatión Reducido.Abstract
Introduction: Schizophrenia is a chronic condition that affects 1% of the population. One of the main theories that explain the etiology of schizophrenia is related to the hypofunction of glutamate N-Methyl-d-Aspartate (NMDA) receptors, inducing the loss of balance between the production of oxidant species produced in the metabolism. cell and antioxidant defense systems, which generates a state of oxidative stress. N-acetylcysteine (NAC) has been proposed as an adjuvant agent to enhance the effectiveness of atypical antipsychotics such as olanzapine, improving the oxidation processes inherent to the disease. Methods: 30 mice divided into 5 experimental groups were used and MK-801 (an NMDA antagonist) was administered as a model of schizophrenia. The participation of oxidative stress was evaluated by measuring lipid peroxidation and reduced glutathione concentration at the level of the frontal cortex. Results: The administration of MK-801 produced an increase in lipid peroxidation and a decrease in the concentration of reduced glutathione at the level of the frontal cortex. In this same sense, both treatment with Olanzapine (OLA) and with NAC and with the combination of OLA-NAC decreased lipid peroxidation and increased glutathione in brain tissue. Discussion: These data suggest that treatment with OLA and NAC could regulate the oxidative damage inherent to the disease and represent a therapeutic option for patients with chronic psychosis or even those resistant to pharmacological treatment.
References
Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr Bull. 17 de octubre de 2018;44(6):1195-203. doi: 10.1093/schbul/sby058. DOI: https://doi.org/10.1093/schbul/sby058
McCutcheon RA, Marques TR, Howes OD. Schizophrenia—An Overview. JAMA Psychiatry. 1 de febrero de 2020;77(2):201-10. doi: 10.1001/jamapsychiatry.2019.3360. DOI: https://doi.org/10.1001/jamapsychiatry.2019.3360
Laursen TM, Nordentoft M, Mortensen PB. Excess Early Mortality in Schizophrenia. Annu Rev Clin Psychol. 28 de marzo de 2014;10(1):425-48. doi: 10.1146/annurev-clinpsy-032813-153657. DOI: https://doi.org/10.1146/annurev-clinpsy-032813-153657
Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis - The Lancet Psychiatry [Internet]. [citado 6 de abril de 2020]. Disponible en: https://www.thelancet.com/journals/lanpsy/article/PIIS2215-0366(17)30078-0/fulltext
Charlson FJ, Baxter AJ, Dua T, Degenhardt L, Whiteford HA, Vos T. Excess mortality from mental, neurological and substance use disorders in the Global Burden of Disease Study 2010. Epidemiol Psychiatr Sci. abril de 2015;24(2):121-40. doi: 10.1596/978-1-4648-0426-7_ch3 DOI: https://doi.org/10.1017/S2045796014000687
Aquino-Miranda G, Rivera-Ramírez N, Márquez-Gómez R, Escamilla-Sánchez J, González-Pantoja R, Ramos-Languren L-E, et al. Histamine H3 receptor activation reduces the impairment in prepulse inhibition (PPI) of the acoustic startle response and Akt phosphorylation induced by MK-801 (dizocilpine), antagonist at N-Methyl-d-Aspartate (NMDA) receptors. Prog Neuropsychopharmacol Biol Psychiatry. 30 de 2019;94:109653. doi: 10.1016/j.pnpbp.2019.109653. Epub 2019 May 17. DOI: https://doi.org/10.1016/j.pnpbp.2019.109653
Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020;205:107426. doi: 10.1016/j.pharmthera.2019.107426. DOI: https://doi.org/10.1016/j.pharmthera.2019.107426
Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry. abril de 2015;72(4):316-24. doi: 10.1001/jamapsychiatry.2014.2414. DOI: https://doi.org/10.1001/jamapsychiatry.2014.2414
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202. doi: 10.1146/annurev.neuro.24.1.167. DOI: https://doi.org/10.1146/annurev.neuro.24.1.167
Hoffman P. The meaning of ‘life’ and other abstract words: Insights from neuropsychology. J Neuropsychol. 2016;10(2):317-43. doi: 10.1111/jnp.12065. Epub 2015 Feb 23. DOI: https://doi.org/10.1111/jnp.12065
Wood SJ, Yücel M, Pantelis C, Berk M. Neurobiology of Schizophrenia Spectrum Disorders: The Role of Oxidative Stress. 2009;38(5):6. DOI: https://doi.org/10.47102/annals-acadmedsg.V38N5p396
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry. 2019;13(5):1032-49. doi: 10.1111/eip.12775. DOI: https://doi.org/10.1111/eip.12775
Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, et al. Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev. 1 de septiembre de 2014;45:46-62. doi: 10.1016/j.neubiorev.2014.05.007. DOI: https://doi.org/10.1016/j.neubiorev.2014.05.007
Halliwell B. Role of Free Radicals in the Neurodegenerative Diseases. Drugs Aging. 1 de septiembre de 2001;18(9):685-716. doi: 10.2165/00002512-200118090-00004. DOI: https://doi.org/10.2165/00002512-200118090-00004
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. marzo de 2014;4(2):108-22. doi: 10.1002/brb3.208. Epub 2014 Jan 13. DOI: https://doi.org/10.1002/brb3.208
Andreazza AC, Frey BN, Valvassori SS, Zanotto C, Gomes KM, Comim CM, et al. DNA damage in rats after treatment with methylphenidate. Prog Neuropsychopharmacol Biol Psychiatry. 15 de agosto de 2007;31(6):1282-8. doi: 10.1016/j.pnpbp.2007.05.012. DOI: https://doi.org/10.1016/j.pnpbp.2007.05.012
Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 13 de octubre de 2019;2019:e5080843. doi: 10.1155/2019/5080843. DOI: https://doi.org/10.1155/2019/5080843
Que X, Hung M-Y, Yeang C, Gonen A, Prohaska TA, Sun X, et al. Oxidized Phospholipids are Proinflammatory and Proatherogenic in Hypercholesterolemic Mice. Nature. junio de 2018;558(7709):301-6. doi: 10.1038/s41586-018-0198-8 DOI: https://doi.org/10.1038/s41586-018-0198-8
Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 1 de julio de 2008;29(7):346-51. doi: 10.1016/j.tips.2008.05.001. DOI: https://doi.org/10.1016/j.tips.2008.05.001
Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 30 de abril de 1976;192(4238):481-3. doi: 10.1126/science.3854. DOI: https://doi.org/10.1126/science.3854
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 1 de agosto de 2020;172:107704. doi: 10.1016/j.neuropharm.2019.107704. DOI: https://doi.org/10.1016/j.neuropharm.2019.107704
Vaquero-Baez M, Díaz-Ruíz A, Tristán-López L, Aviña-Cervantes C, Torner C, Ramírez-Bermúdez J, et al. Clozapine and desmethylclozapine: correlation with neutrophils and leucocytes counting in Mexican patients with schizophrenia. BMC Psychiatry. 9 de octubre de 2019;19(1):295. doi: 10.1186/s12888-019-2286-1. DOI: https://doi.org/10.1186/s12888-019-2286-1
Lowe P, Krivoy A, Porffy L, Henriksdottir E, Eromona W, Shergill SS. When the drugs don’t work: treatment-resistant schizophrenia, serotonin and serendipity. Ther Adv Psychopharmacol. 1 de enero de 2018;8(1):63-70. doi: 10.1177/2045125317737003. DOI: https://doi.org/10.1177/2045125317737003
Komossa K, Rummel‐Kluge C, Hunger H, Schmid F, Schwarz S, Duggan L, et al. Olanzapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev [Internet]. 2010 [citado 13 de mayo de 2020];(3). Disponible en: https://www-cochranelibrary-com.pbidi.unam.mx:2443/cdsr/doi/10.1002/14651858.CD006654.pub2/full DOI: https://doi.org/10.1002/14651858.CD006654.pub2
Fulton B, Goa KL. Olanzapine: A Review of its Pharmacological Properties and Therapeutic Efficacy in the Management of Schizophrenia and Related Psychoses. Drugs. febrero de 1997;53(2):281-98. doi: 10.2165/00003495-199753020-00007. DOI: https://doi.org/10.2165/00003495-199753020-00007
Wang H, Xu H, Dyck LE, Li X-M. Olanzapine and quetiapine protect PC12 cells from β-amyloid peptide25–35-induced oxidative stress and the ensuing apoptosis. J Neurosci Res. 2005;81(4):572-80. doi: 10.1002/jnr.20570. DOI: https://doi.org/10.1002/jnr.20570
Barbosa L, Bernardo M. Utilización de olanzapina en el tratamiento de la esquizofrenia y el trastorno bipolar. Psiquiatr Biológica. enero de 2016;23(1):4-22. DOI: https://doi.org/10.1016/j.psiq.2015.10.008
Atmaca M, Kuloglu M, Ustundag B. Serum Leptin and Triglyceride Levels in Patients on Treatment With Atypical Antipsychotics. J Clin Psychiatry. 15 de mayo de 2003;64(5):598-604. doi: 10.4088/jcp.v64n0516. DOI: https://doi.org/10.4088/JCP.v64n0516
Abdul-Monim Z, Reynolds GP, Neill JC. The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res. mayo de 2006;169(2):263-73 doi: 10.1016/j.bbr.2006.01.019. DOI: https://doi.org/10.1016/j.bbr.2006.01.019
Goetghebeur P, Dias R. Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat—a back translational study. Psychopharmacology (Berl). enero de 2009;202(1-3):287-93. doi: 10.1007/s00213-008-1132-9. DOI: https://doi.org/10.1007/s00213-008-1132-9
Song JC, Seo MK, Park SW, Lee JG, Kim YH. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice. Clin Psychopharmacol Neurosci. 31 de agosto de 2016;14(3):279-85. doi: 10.9758/cpn.2016.14.3.279. DOI: https://doi.org/10.9758/cpn.2016.14.3.279
Liu X, Li J, Guo C, Wang H, Sun Y, Wang H, et al. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits. Front Behav Neurosci [Internet]. 2018 [citado 13 de mayo de 2020];11. Disponible en: https://www.frontiersin.org/articles/10.3389/fnbeh.2017.00260/full DOI: https://doi.org/10.3389/fnbeh.2017.00260
Park SW, Lee CH, Cho HY, Seo MK, Lee JG, Lee BJ, et al. Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures. Synap N Y N. mayo de 2013;67(5):224-34. doi: 10.1002/syn.21634. DOI: https://doi.org/10.1002/syn.21634
Reddy NR, Krishnamurthy S. Repeated olanzapine treatment mitigates PTSD like symptoms in rats with changes in cell signaling factors. Brain Res Bull. 1 de junio de 2018;140:365-77. doi: 10.1016/j.brainresbull.2018.06.003. DOI: https://doi.org/10.1016/j.brainresbull.2018.06.003
Boz, Z., Hu, M., Yu, Y., & Huang, X. (5 de Nov de 2020). N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Scientific Reports. doi:10.1038/s41598-020-75356-3. doi: 10.1038/s41598-020-75356-3. DOI: https://doi.org/10.1038/s41598-020-75356-3
Scalley RD, Conner CS. Acetaminophen poisoning: a case report of the use of acetylcysteine. Am J Hosp Pharm. agosto de 1978;35(8):964-7. DOI: https://doi.org/10.1093/ajhp/35.8.964
Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 1 de diciembre de 2008;8(12):1955-62. doi: 10.1517/14728220802517901. DOI: https://doi.org/10.1517/14728220802517901
Rossell SL, Francis PS, Galletly C, Harris A, Siskind D, Berk M, et al. N -acetylcysteine (NAC) in schizophrenia resistant to clozapine: a double-blind randomised placebo controlled trial targeting negative symptoms. BMC Psychiatry. diciembre de 2016;16(1):1-9. doi: 10.1186/s12888-016-1030-3. DOI: https://doi.org/10.1186/s12888-016-1030-3
Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev. 1 de agosto de 2015;55:294-321. doi: 10.1016/j.neubiorev.2015.04.015. DOI: https://doi.org/10.1016/j.neubiorev.2015.04.015
Kerksick C, Willoughby D. The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. J Int Soc Sports Nutr. 1 de diciembre de 2005;2(2):38. doi: 10.1186/1550-2783-2-2-38. DOI: https://doi.org/10.1186/1550-2783-2-2-38
Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci. 1 de marzo de 2011;36(2):78-86. doi: 10.1503/jpn.100057. DOI: https://doi.org/10.1503/jpn.100057
Quintavalle C, Donnarumma E, Fiore D, Briguori C, Condorelli G. Therapeutic strategies to prevent contrast-induced acute kidney injury. Curr Opin Cardiol. noviembre de 2013;28(6):676-82. doi: 10.1097/HCO.0b013e3283653f41. DOI: https://doi.org/10.1097/HCO.0b013e3283653f41
Smaga I, Pomierny B, Krzyżanowska W, Pomierny-Chamioło L, Miszkiel J, Niedzielska E, et al. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: Behavioral and biochemical analyses in rats. Prog Neuropsychopharmacol Biol Psychiatry. 3 de diciembre de 2012;39(2):280-7. doi: 10.1016/j.pnpbp.2012.06.018. DOI: https://doi.org/10.1016/j.pnpbp.2012.06.018
Diaz-Ruiz A, Alcaraz-Zubeldia M, Maldonado V, Salgado-Ceballos H, Mendez-Armenta M, Rios C. Differential time-course of the increase of antioxidant thiol-defenses in the acute phase after spinal cord injury in rats. Neurosci Lett. 2009 Mar 6;452(1):56-9. doi: 10.1016/j.neulet.2009.01.020. DOI: https://doi.org/10.1016/j.neulet.2009.01.020
Triggs WJ, Willmore LJ. In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem. 1984 Apr;42(4):976-80. doi: 10.1111/j.1471-4159.1984.tb12699.x. DOI: https://doi.org/10.1111/j.1471-4159.1984.tb12699.x
Diaz-Ruiz, A., Rios, C., Duarte, I., Correa, D., Guizar-Sahagun, G., Grijalva, I., Ibarra, A. (1999). Cyclosporin-A inhibits lipid peroxidation after spinal cord injury in rats. Neurosci Lett 266, 61–64). doi: 10.1016/s0304-3940(99)00255-4. DOI: https://doi.org/10.1016/S0304-3940(99)00255-4
Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, et al. Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry. agosto de 2017;7(8):e1215. doi: 10.1038/tp.2017.178. DOI: https://doi.org/10.1038/tp.2017.178
Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, et al. N-Acetyl Cysteine as a Glutathione Precursor for Schizophrenia—A Double-Blind, Randomized, Placebo-Controlled Trial. Biol Psychiatry. 1 de septiembre de 2008;64(5):361-8. doi: 10.1016/j.biopsych.2008.03.004. DOI: https://doi.org/10.1016/j.biopsych.2008.03.004
Do KQ, Trabesinger AH, Kirsten‐Krüger M, Lauer CJ, Dydak U, Hell D, et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721-8. doi: 10.1046/j.1460-9568.2000.00229.x. DOI: https://doi.org/10.1046/j.1460-9568.2000.00229.x
Farokhnia M, Azarkolah A, Adinehfar F, Khodaie-Ardakani M-R, Hosseini S-M-R, Yekehtaz H, et al. N-Acetylcysteine as an Adjunct to Risperidone for Treatment of Negative Symptoms in Patients With Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Clin Neuropharmacol. diciembre de 2013;36(6):185–192. doi: 10.1097/WNF.0000000000000001. DOI: https://doi.org/10.1097/WNF.0000000000000001
Sepehrmanesh Z, Heidary M, Akasheh N, Akbari H, Heidary M. Therapeutic effect of adjunctive N-acetyl cysteine (NAC) on symptoms of chronic schizophrenia: A double-blind, randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry. 02 de 2018;82:289-96. doi: 10.1016/j.pnpbp.2017.11.001. DOI: https://doi.org/10.1016/j.pnpbp.2017.11.001
Dean OM, Mancuso SG, Bush AI, Copolov D, Do KQ, Cuénod M, et al. Benefits of adjunctive N-acetylcysteine in a sub-group of clozapine-treated individuals diagnosed with schizophrenia. Psychiatry Res. 30 de diciembre de 2015;230(3):982-3 doi: 10.1016/j.psychres.2015.10.037. DOI: https://doi.org/10.1016/j.psychres.2015.10.037
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
September 2022-present © Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
January-September 2022 © The authors. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
January 2014-December 2021 © Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.