Intra-striatum lodoxamide produced conditioning place preference in rats via GPR35 independent mechanisms


  • Alejandro Díaz-Barba Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes
  • Raquel Guerrero-Alba Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes
  • J. Luis Quintanar Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes
  • Bruno Antonio Marichal Cancino Department of Physiology and Pharmacology, Center for Basic Sciences, Autonomous University of Aguascalientes



GPR35, Lodoxamide, ML-194, Conditioning place preference paradigm


The function of the protein-coupled receptor 35 (GPR35) in the central nervous system (CNS) remains largely unknown. Due to its expression in the ventral striatum, a key area in the brain reward system, the function of GPR35 in reinforcing actions is questioning. To analyze if activation of GPR35 in the ventral striatum is related to reinforcing actions, male Wistar rats (250-300 g) received stereotaxic surgery from placing guide cannulae in the ventral striatum. Different doses of lodoxamide (a full rat-GPR35 agonist) or vehicle (DMSO 10%) were injected (intra-ventral-striatum) in the absence and during the pretreatment with ML-194 (a selective GPR35 antagonist). Lodoxamide (100 pmol) induced a significant increment in preference for the drug-conditioning chamber (p < 0.05), but not vehicle or ML-194 per se (p > 0.05). On the other hand, the pretreatment with ML-194 did not prevent lodoxamide's reinforcing effects. Thus, the reinforcing actions of lodoxamide (intra-ventral-striatum) involve mechanisms likely independent of GPR35.


1. O'Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HH, et al. Discovery of three novel G-protein-coupled receptor genes. Genomics. 1998;47(2):310-3.
2. Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G. Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun. 2010;398(3):420-5.
3. Guo J, Williams DJ, Puhl HL, 3rd, Ikeda SR. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther. 2008;324(1):342-51.
4. Jenkins L, Alvarez-Curto E, Campbell K, de Munnik S, Canals M, Schlyer S, et al. Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα₁₃ and β-arrestin-2. Br J Pharmacol. 2011;162(3):733-48.
5. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021-8.
6. Amori L, Wu HQ, Marinozzi M, Pellicciari R, Guidetti P, Schwarcz R. Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience. 2009;159(1):196-203.
7. Pocivavsek A, Wu HQ, Potter MC, Elmer GI, Pellicciari R, Schwarcz R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2011;36(11):2357-67.
8. Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull. 2010;36(2):211-8.
9. Ohshiro H, Tonai-Kachi H, Ichikawa K. GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun. 2008;365(2):344-8.
10. Mok MH, Fricker AC, Weil A, Kew JN. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology. 2009;57(3):242-9.
11. Morales-Puerto N, Giménez-Gómez P, Pérez-Hernández M, Abuin-Martínez C, Gil de Biedma-Elduayen L, Vidal R, et al. Addiction and the kynurenine pathway: A new dancing couple? Pharmacology & therapeutics. 2021;223:107807.
12. Taniguchi Y, Tonai-Kachi H, Shinjo K. Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Letters. 2006;580(21):5003-8.
13. Shrimpton AE, Braddock BR, Thomson LL, Stein CK, Hoo JJ. Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype. Clin Genet. 2004;66(6):537-44.
14. Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med. 2013;4(6):624-30.
15. McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1573-6.
16. Bayne K. Revised Guide for the Care and Use of Laboratory Animals available. American Physiological Society. Physiologist. 1996;39(4):199, 208-11.
17. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York. 2014;7th edn.
18. Vázquez-León P, Miranda-Páez A, Calvillo-Robledo A, Marichal-Cancino BA. Blockade of GPR55 in dorsal periaqueductal gray produces anxiety-like behaviors and evocates defensive aggressive responses in alcohol-pre-exposed rats. Neurosci Lett. 2021:136218.
19. Vázquez-León P, Ramírez-San Juan E, Marichal-Cancino BA, Campos-Rodríguez C, Chávez-Reyes J, Miranda-Páez A. NPY-Y(1) receptors in dorsal periaqueductal gray modulate anxiety, alcohol intake, and relapse in Wistar rats. Pharmacol Biochem Behav. 2020;199:173071.
20. Liu J, Tao X, Liu F, Hu Y, Xue S, Wang Q, et al. Behavior and Hippocampal Epac Signaling to Nicotine CPP in Mice. Transl Neurosci. 2019;10:254-9.
21. Sun Y, Chen G, Zhou K, Zhu Y. A Conditioned Place Preference Protocol for Measuring Incubation of Craving in Rats. J Vis Exp. 2018(141).
22. Bespalov A, Dumpis M, Piotrovsky L, Zvartau E. Excitatory amino acid receptor antagonist kynurenic acid attenuates rewarding potential of morphine. European Journal of Pharmacology. 1994;264(3):233-9.
23. Bespalov AY. The expression of both amphetamine-conditioned place preference and pentylenetetrazol-conditioned place aversion is attenuated by the NMDA receptor antagonist (±)-CPP. Drug and Alcohol Dependence. 1996;41(1):85-8.
24. Avunduk AM, Avunduk MC, Dayanir V, Tekelioğlu Y, Dayioğlu YS. Pharmacological mechanism of topical lodoxamide treatment in vernal keratoconjunctivitis: a flow-cytometric study. Ophthalmic Res. 1998;30(1):37-43.
25. Kim MJ, Park SJ, Nam SY, Im DS. Lodoxamide Attenuates Hepatic Fibrosis in Mice: Involvement of GPR35. Biomol Ther (Seoul). 2019;28(1):92-7.
26. Sharmin O, Abir AH, Potol A, Alam M, Banik J, Rahman AFMT, et al. Activation of GPR35 protects against cerebral ischemia by recruiting monocyte-derived macrophages. Scientific Reports. 2020;10(1):9400.
27. Navratilova E, Xie JY, King T, Porreca F. Evaluation of reward from pain relief. Ann N Y Acad Sci. 2013;1282:1-11.

Additional Files



How to Cite

Díaz-Barba, A., Guerrero-Alba, R., Quintanar, J. L., & Marichal Cancino, B. A. (2022). Intra-striatum lodoxamide produced conditioning place preference in rats via GPR35 independent mechanisms. Archivos De Neurociencias, 28(1).



Original Articles