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1 

Decreased GABAA receptor β2 subunit immunoreactivity in a 1 

rat model of autism. 2 

 3 

Abstract  4 

Introduction: Gamma-aminobutyric acid (GABA) is the primary 5 

inhibitory neurotransmitter in the brain, and activation of 6 

GABA type A (GABAA) receptors mediates rapid inhibitory 7 

actions. Numerous studies have shown that individuals with 8 

autism spectrum disorder (ASD) exhibit abnormalities in the 9 

expression of GABAA receptors in several brain areas. In 10 

addition, animal models of ASD have suggested alterations 11 

in GABAergic neurotransmission and dysregulation of the 12 

balance between inhibitory and excitatory systems. 13 

Objective: We investigated the immunolabeling of GABAA 14 

receptor β2 subunit (GARB2) in the hippocampus, the 15 

amygdala, and the thalamus of infant rats prenatally 16 

exposed to valproic acid (VPA) as a model of ASD. Methods: 17 

Pregnant female rats were injected with VPA (600mg/Kg, 18 

i.p.) on embryonic day 12; control rats were injected with 19 

saline (SS group). On postnatal day 14, rats from both 20 

groups were anesthetized, transcardially perfused with 0.9% 21 

NaCl and 4% paraformaldehyde, and sequential coronal brain 22 

slices (40µm thickness) were obtained. Immunohistochemistry 23 
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was performed to detect GARB2, and the relative optical 24 

density (OD) of immunoreactivity was analyzed. Results: Our 25 

data showed a statistically significant decrease in GARB2 26 

immunoreactivity in the lateral amygdaloid nucleus and the 27 

ventral and lateral thalamic nuclei of VPA group when 28 

compared to the SS group. No statistically significant 29 

differences were found in the hippocampus. Discussion: Our 30 

findings suggest that prenatal exposure to VPA reduces 31 

GARB2 immunoreactivity in limbic brain regions involved in 32 

social-emotional behavior, consistent with previous reports 33 

in individuals with ASD. Conclusion These findings support 34 

for the involvement of the GABAergic system in the 35 

pathogenesis of ASD. 36 

 37 

Keywords: GABA, GABAA, Autism, Valproic acid, GARB2. 38 

 39 

 40 

 41 

 42 

 43 
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 44 

 45 

 46 

 47 

 48 

Introduction 49 

Autism spectrum disorder (ASD) is a complex 50 

neurodevelopment disorder characterized by difficulties in 51 

social communication (verbal and nonverbal), interaction 52 

and repetitive behaviors.1 According to the Centers for 53 

Disease Control and Prevention in the United States, ASD 54 

affects 1 in 44 children, with a higher prevalence in boys 55 

than in girls (4.2 times more prevalent among boys).2 56 

However, the etiology of ASD remains unclear. 57 

Individuals with ASD often exhibit abnormalities in 58 

glutamate3-6 and gamma-aminobutyric acid (GABA) 59 

neurotransmission systems.7-11 GABA receptors type A (GABAA) 60 

are ligand-gated ion channel that mediate rapid inhibition 61 

in the brain.12 This receptor is composed by five protein 62 

subunits with different isoforms: α1-6, β1-3, γ1-3, δ, ε, 63 
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θ, π.13,14 The most common arrangement of GABAA receptors in 64 

the central nervous system (20 - 50% of all central 65 

synapses) is the α1β2γ215,16, with GABA binding at the 66 

junction between α and β subunits.17 Autoradiography 67 

studies of brain tissue from individuals with ASD have 68 

revealed decrease density of GABAA and benzodiazepine 69 

receptors in the hippocampus and the anterior cingulate 70 

cortex.18-20 In adition, reduced mRNA expression of GABAA 71 

receptor α6, β2, and γ2 subunits has been detected in the 72 

superior frontal cortex and the cerebellum of individuals 73 

with ASD.10 Interestingly, the gene encoding the GABAA 74 

receptor β2 subunit has been associated with an increased 75 

risk of ASD.21 Furthermore, 3-4% of individuals with ASD 76 

have chromosomal duplications in the proximal region of 77 

15q11-q13, the most commonly observed chromosomal 78 

abnormality in these patients.22 This chromosomal region 79 

contains the GABRB3, GABRA5, and GABRG3 genes, which encode 80 

β3, α5, and γ3 subunits of the GABAA receptor, 81 

respectively.23 82 

Preclinical studies using the valproic acid (VPA) rat 83 

model of ASD have demonstrated disruptions in the 84 

excitatory/inhibitory balance in the amygdala24, the 85 

hippocampus25,26 and cortex.27 Impaired GABA-mediated 86 
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inhibition has been identified in the rat hippocampus in 87 

the VPA-induced model,27 as well as reduced GABAA receptor 88 

α1, α2, α3 and β3 mRNA levels in the medial prefrontal 89 

cortex of adult rodents.28 Thus, evidence supports the 90 

hypothesis of GABAergic dysfunction in ASD. The VPA autism 91 

model has been widely used as an environmental model of ASD 92 

in rodents; however, the effect of prenatal exposure to VPA 93 

on brain GABAA receptor expression has not been fully 94 

characterized. In particular, the hippocampus, amygdala and 95 

thalamus are brain areas involved in behavioral alterations 96 

or pathological changes observed in both individuals with 97 

ASD and animal models.29 Therefore, we aimed to investigate 98 

the expression of the GABAA receptor β2 subunit (GARB2) in 99 

these brain areas in infant rats exposed to VPA in utero. 100 

 101 

Methods 102 

Animals 103 

This study adhered to Mexican guidelines on the care and 104 

use of laboratory animals (NOM-062-ZOO-1999) and was 105 

approved by the Internal Committee for the Care and Use of 106 

Laboratory Animals of the Instituto de Investigaciones 107 

Cerebrales (CICUAL-CICE 2017-002-c). Wistar rats were 108 

https://creativecommons.org/licenses/by-nc/4.0/
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obtained from our local colony and housed in our vivarium. 109 

Throughout the study, rats were maintained in a 12:12 h 110 

light-dark cycle, with lights on at 08:00, under room 111 

temperature and humidity conditions, with free access to 112 

water and food (Rismart). Adult female rats with regulated 113 

fertility cycles were mated overnight with a sexually 114 

experienced male. The presence of spermatozoa in vaginal 115 

smears the following morning indicated the first day of 116 

pregnancy. On the twelfth and a half embryonic day, females 117 

received a single intraperitoneal injection of 600 mg/kg of 118 

VPA (sodium valproate Sigma-Aldrich, St. Louis, MO, 119 

dissolved in 0.9% NaCl for a concentration of 250 mg/mL) 120 

for the VPA group. Control rats were injected with 0.9% 121 

NaCl on the same embryonic day (SS group). Females were 122 

housed individually and allowed to rear their litters.30 123 

Experiments to assess GARB2 immunoreactivity were performed 124 

on postnatal day 14 (P14) rat pups. The SS group consisted 125 

of 9 rats (3 males and 6 females), while the VPA group 126 

consisted of 10 rats (8 males and 2 females). 127 

 128 

Immunohistochemistry 129 

The rats were deeply anesthetized with sodium pentobarbital 130 

(60 mg/kg, i.p.) and transcardially perfused with 0.9% NaCl 131 



 

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access 

articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 

International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in 

any medium, provided the original work is properly cited. No commercial re-use is allowed. 

7 

followed by 4% paraformaldehyde (prepared in 0.1 M 132 

phosphate buffer [PB], pH=7.4) at a flow rate of 12 mL/min 133 

flow. Brains were left in situ overnight at 4 °C. The next 134 

day, they were removed and postfixed in the same fixative 135 

for an additional 2 h. Subsequently, the brains were 136 

cryoprotected with 30% sucrose (prepared in 0.1M PB) for 72 137 

h at 4 °C. Brain coronal sections (40 µm thick) were 138 

obtained at the level of the dorsal hippocampus using a 139 

Leica cryostat. 140 

For the immunohistochemical detection, the slices were 141 

rinsed in 0.1 M PB containing 0.1% triton (0.1% PBT). 142 

Endogenous peroxidases were quenched with 30% hydrogen 143 

peroxide for 10 min. To block nonspecific binding, the 144 

slices were treated with 5% horse serum in 0.3% PBT for 1 h 145 

at room temperature. Subsequently, the slices were 146 

incubated with the primary antibody against GARB2 (1:1000; 147 

MAB341, Millipore) for 48 h at 4 °C. The slices were then 148 

incubated with a biotinylated anti-mouse secondary antibody 149 

(1:400; Vector Laboratories Inc.) for 90 min at room 150 

temperature, followed by incubation with the avidin-biotin 151 

complex (ABC kit PK-6100 Vector Laboratories Ellite-152 

Standard Inc.) for an additional 90 min at room 153 

temperature. Immunodetection was visualized using 3,3′-154 



 

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access 

articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 

International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in 

any medium, provided the original work is properly cited. No commercial re-use is allowed. 

8 

diaminobenzidine in the presence of nickel (SK-4100 Vector 155 

Laboratories Inc.). Brain slices were mounted on 156 

electrostatically charged glass slides (Superfrost, Fisher 157 

Scientific) and coverslipped using non-aqueous medium 158 

(Permount, Fisher). Immunolabeling was performed on some 159 

brain slides without the incubation with primary antibody 160 

to discard non-specific immunostaining (negative control); 161 

no unwanted immunoreactivity was found. 162 

 163 

Densitometric analysis 164 

Photomicrographs of three different brain sections per rat 165 

(from either left or right hemisphere) were taken using a 166 

Leica DM500 light microscope connected to a Leica ICC50 HD 167 

digital camera. The Leica Application System LAS EZ 4.8 168 

software was used for this purpose. Photomicrographs were 169 

taken of the dorsal hippocampus (including the strata 170 

oriens, pyramidal, and radiatum in CA1, CA2, and CA3 171 

fields, as well as the granule cell layer and hilus of the 172 

dentate gyrus), the lateral and basolateral nuclei of the 173 

amygdala, and the ventral and lateral nuclei of the 174 

thalamus. A standard brightness of 55% and a magnification 175 

of 40x were used. 176 
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The relative optical density (OD) of GARB2 177 

immunoreactivity was analyzed using Fiji Image J software. 178 

The software was calibrated according to developer´s 179 

instructions, allowing the transformation of pixel values 180 

to a scale that correlates with optical density. This 181 

allowed the determination of the mean gray value of the 182 

region of interest (ROI).31 The ROI was defined as 6,500 µm2 183 

for each stratum of the hippocampus and 70,000 µm2 for both 184 

the amygdala and the thalamus. The presence of 185 

immunoreactivity to GARB2 appeared as gray to black, while 186 

its absence was indicated by a white color. The OD 187 

background was determined by averaging the optical density 188 

of the corpus callosum from the slices used. This brain 189 

region was chosen because it does not contain GABAA 190 

receptors.32 The background was then subtracted from all 191 

images. The final GARB2 OD for each animal was obtained by 192 

averaging the OD from the three analyzed slices and 193 

expressed as arbitrary units (a.u.). A higher relative OD 194 

indicates increased expression of the protein of interest. 195 

 196 

Statistical analysis  197 
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Data were initially assessed for normality of distribution 198 

using the Shapiro-Wilk test. Differences in GARB2 199 

immunoreactivity between the VPA and SS groups in different 200 

brain regions were analyzed using either an unpaired two-201 

tailed Student's t-test or a Mann-Whitney test, as 202 

appropriate. Analyses were performed using GraphPad Prism 203 

software (version 6), with a significance level of α = 204 

0.05. 205 

 206 

Results 207 

Statistical analysis showed that prenatal VPA 208 

administration significantly decreased GARB2 209 

immunoreactivity in the basolateral nucleus of the amygdala 210 

(t=2.814, df=17; p = 0.012) compared to the SS group. A 211 

non-significant reduction was also observed in the lateral 212 

amygdaloid nucleus (MWU=21; p=0.0534). Similarly, VPA-213 

treated rats exhibited significantly lower OD values, 214 

reflecting reduced GARB2 immunoreactivity in both the 215 

lateral (t=2.804, df=17; p=0.0122) and ventral (t=3.281, 216 

df=17; p<0.004) thalamic nuclei compared to SS group. No 217 

significant differences were found between VPA and SS 218 

groups in any hippocampal subregions or strata (p>0.05), 219 
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although a trend toward decreased GARB2 immunoreactivity 220 

was observed in the CA2 pyramidal layer (MWU=23.5; p=0.07; 221 

Figures 1 and 2). 222 

 223 

Discussion 224 

One hypothesis proposed to explain the etiology of ASD is 225 

the imbalance between neuronal excitation and inhibition, 226 

primarily mediated by glutamate and GABA, respectively.33 227 

In this study, we found that infant rats prenatally exposed 228 

to VPA exhibited reduced GARB2 immunoreactivity in specific 229 

regions of the amygdala and thalamus compared to control 230 

rats. These preclinical results support the relevance of 231 

GABA receptors in the pathophysiology of autism. 232 

 Several studies have reported a decrease in GABA 233 

levels in the frontal lobe and anterior cortex of patients 234 

with ASD11,34, and decreased levels of glutamic acid 235 

decarboxylase (GAD) 65 and 67, the enzyme that catalyzes 236 

the conversion of glutamate to GABA, in the parietal cortex 237 

and cerebellum of post-mortem samples from adults with 238 

ASD,8,35 and in the hippocampus and cerebellum of VPA-239 

exposed rats.36 With respect to GABA receptors, lower 240 

densities of GABAA receptors have been found in the 241 
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hippocampus, anterior and posterior cingulate cortex, and 242 

fusiform gyrus of post-mortem brain tissue from individuals 243 

with autism.18-20 Additionally, there is a reduction in GARB2 244 

protein levels in the superior frontal cortex and down-245 

regulation of its mRNA in the cerebellum.10 Interestingly, 246 

GARB2 polymorphisms have also been associated with ASD.21 A 247 

(123) I-iomazenil (IMZ, a benzodiazepine ligand) SPECT 248 

study in children with ASD found decreased accumulation of 249 

(123) I-IMZ in the middle and superior frontal cortex.37 250 

However, a more recent study found no changes in GABAA 251 

receptor or GABAA α5 subunit availability in the 252 

hippocampal or amygdala regions of adults with ASD.33 253 

Our results showed that infant rats prenatally exposed 254 

to VPA displayed decreased GARB2 immunoreactivity in the 255 

amygdala and thalamus compared to age-matched rats with 256 

standard gestation. These findings align with the 257 

excitation/inhibition imbalance hypothesis in individuals 258 

with ASD. Reduced expression of GARB2, which indirectly 259 

indicates reduced availability of GABAA receptors, may 260 

contribute to social deficits25,38,39 and other neurological 261 

changes observed in the VPA rat model, such as increased 262 

seizure susceptibility.25,30 The gene encoding GARB2 has 263 

been previously associated with a higher risk of ASD.21 It 264 
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is noteworthy that both the amygdala and thalamus have been 265 

implicated in behavioral alterations and pathological 266 

changes observed in individuals with ASD and animal 267 

models.25,29 268 

Consisted with our findings, Yang et al.28 also 269 

described impaired inhibitory GABAergic neurotransmission 270 

due to decreased GABA release and mRNA levels of GABAA 271 

receptor α1, α2, α3, and β3 subunits in the medial 272 

prefrontal cortex of VPA-exposed mice. These authors also 273 

demonstrated that acute administration of combined GABAA 274 

and GABAB receptor agonists reduced deficits in 275 

sociability, anxiety, and repetitive behaviors in this ASD 276 

model.28 However, Bertelsen et al.40 reported increased 277 

binding of [11C] Ro15-4513 (an agonist with high affinity 278 

for the GABAA receptor α-subunit) in the left amygdala of 279 

VPA-treated rats as an ASD model, whereas no significant 280 

differences were found in the thalamus compared to control 281 

rats. That study differs from ours in the VPA 282 

administration protocol and receptor detection methodology. 283 

They administered 20 mg/kg of VPA daily during pregnancy, 284 

while we injected a single dose of 600 mg/kg on embryonic 285 

day 12. Therefore, it is essential to consider potential 286 
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differences in the assessed neurobiological changes 287 

depending on the methodological procedures used. Another 288 

study conducted in other ASD mouse models (Cntnap2 or 289 

Shank3 knockout mice and mice with the 16p11.2 deletion) 290 

did not identified differences in the levels of GABAA 291 

receptors or their α5 subunit in the frontal cortex, 292 

cingulate cortex, caudate/putamen, dorsal hippocampus, 293 

cerebellum, or amygdala between these three models or 294 

compared to control mice.35 This discrepancy may be due to 295 

specific changes in GABAA receptor subunits or the 296 

different etiology of the ASD models (i.e., environmental 297 

versus genetic). Additional experimental protocols are 298 

needed to better understand the complex neurobiology of 299 

ASD. 300 

 301 

Conclusions 302 

Our study provides further evidence supporting the role of 303 

GABAergic dysfunction, specifically GARB2 expression, in 304 

the pathophysiology of ASD using a VPA-induced rat model. 305 

Our findings indicate that prenatal VPA exposure leads to 306 

reduced GARB2 immunoreactivity in the amygdala and 307 

thalamus, regions associated with social deficits and other 308 
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neurological alterations in ASD. These findings are 309 

consistent with the hypothesis of an excitation/inhibition 310 

imbalance in individuals with ASD. However, the complex 311 

neurobiology of ASD warrants further investigation to 312 

elucidate the contributions of specific GABAA receptor 313 

subunits and the varying etiologies of ASD models. A deeper 314 

understanding of the role of the GABAergic system in ASD, 315 

including the impact of hippocampal GABAergic receptors, 316 

could pave the way for novel therapeutic interventions and 317 

help improve the quality of life for individuals with ASD. 318 

 319 

Figure legends 320 

Figure 1. Effect of prenatal exposure to valproic acid 321 

(VPA) on GARB2 immunoreactivity in the amygdala, thalamus, 322 

and hippocampus of postnatal day 14 rat pups. 323 

Abbreviations: SS, saline solution; LaA, lateral nucleus of 324 

the amygdala; BLA, basolateral nucleus of the amygdala; LT, 325 

lateral nucleus of the thalamus; VT, ventral nucleus of the 326 

thalamus; Or, oriens; Py, pyramidale; Ra, radiatum; DG, 327 

Dentate gyrus; Gr, Granular layer, Hi, Hilus; CA1, CA2, and 328 

CA3 hippocampal regions. *p<0.05. 329 

  330 
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Figure 2. Photomicrographs show GARB2 immunoreactivity in 331 

the amygdala and thalamus of a postnatal day 14 rat pup 332 

exposed in utero to valproic acid (VPA) or saline solution 333 

(SS). The insets show greater GARB2 immunoreactivity in the 334 

rat from the SS group than in the rat from the VPA group 335 

(scale bars =100 µm). Arrowheads point to GARB2 336 

immunoreactive cells. Abbreviations: LaA, lateral nucleus 337 

of the amygdala; BLA, basolateral nucleus of the amygdala; 338 

LT, lateral nucleus of the thalamus; VT, ventral nucleus of 339 

the thalamus. 340 

 341 
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