Staged Neuroendoscopic Management of a Dandy Walker Malformation
Case Presenting with Complex Hydrocephalus

Marios Theologou, Panagiotis Varoutis, Vassilios Tsitouras

Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokration, Thessaloniki, Greece

Correspondence: Marios Theologou MD, MSc, 49 Konstantinoupoleos st, 54642, Thessaloniki, Greece, e-mail: theologou_marios@dr.com tel:+30-6932870700

Running title: Endoscopic treatment of complex hydrocephalus in Dandy Walker malformation

DISCLOSURE
Authors of the present study have no conflict of interest to declare.
Funding sources: Nill

ORCID identifiers:
Marios Theologou (https://orcid.org/0000-0002-6580-5382)
Panagiotis Varoutis (not available)
Author Contributions:

Marios Theologou: Visualization, Conceptualization, Draft Preparation, Literature Search, Multi-media file creation

Panagiotis Varoutis: Draft review, Literature Search

Vassilios Tsitouras: Supervision, Motivation, Draft Review
Abstract

Background: Dandy-Walker malformation is a rare congenital condition characterized by alteration of posterior fossa anatomy. Hydrocephalus is a common finding in these patients. VP-shunt placement remains the treatment of choice. Endoscopic Third Ventriculostomy (ETV) is an acceptable alternative for older children. Other techniques have also been proposed.

Case presentation: A full-term infant presented with signs of hydrocephalus. An endoscopic foraminoplasty of the posterior fossa cyst was conducted as a first stage. The cyst’s volume was reduced, without any changes of the supratentorial ventricular dimensions. A month post-surgery signs of hydrocephalus reoccurred. An ETV was performed alongside a fenestration of the tentorium. The toddler was discharged in good condition with amelioration of her symptoms. One month later she presented with recurrent hydrocephalus and subdural hygromas. A shunt was placed in the posterior fossa under endoscopic guidance, and an additional one was introduced in the subdural space. The patient was followed-up for 18 months without any further need for treatment. VP-shunt placement is the treatment of choice.

Discussion: Lushka and Magendie foraminoplasty seems to be ineffective. ETV should be reserved for older children. The ventriculoscope can be employed for positioning the VP-shunt in a specific anatomical region. Subdural hygromas may present
after neuroendoscopic treatment. A staged approach may be mandatory for complex hydrocephalus treatment.

Keywords: Dandy Walker, hydrocephalus, endoscopic third ventriculostomy, tentorium fenestration, Ventriculo-Peritoneal shunt
Introduction

Dandy–Walker malformation (DWM) is a rare congenital condition characterized by vermis hypoplasia/aplasia, cystic dilatation of the fourth ventricle and, upward displacement of tentorium and torcula. Common clinical manifestations include psychomotor development delay, ataxia, muscle weakness, seizures, apnea attacks and hydrocephalus. The treatment of the last is usually complex, frequently demanding a staged approach. We present the multi-phase neuroendoscopic treatment of a DWM case presenting with complex hydrocephalus.

Case presentation

A video presentation is available (Video 1).

Patient Characteristics

A full-term, African race infant was delivered from a first pregnancy by Cesarean section. The first-trimester ultrasonographic screening revealed ventricular enlargement, absence of septum pellucidum, hypoplasia of choroid plexus, and a cystic dilatation of the posterior fossa with no detectable vermis. Apart from cephalomegaly other somatometric parameters were normal. Cardiopulmonary Resuscitation was performed upon delivery due to cyanosis and bradycardia. She was admitted to
the Neonatal Intensive Care Unit. Neurologic assessment revealed lethargy, generalized hypotonia, a bulging fontanel, and a rapid increase in head circumference.

MRI Findings
A diffuse dilatation of the ventricular system, a fourth ventricle cystic enlargement, cerebellar and vermian hypoplasia, an anterograde brainstem and upward tentorium and torcula displacement were registered. The aqueduct was regarded patent and there was no detectable choroid plexus. Findings were associated with a “real” DWM(1).

Surgical plan
Hydrocephalus was associated with a fourth ventricle outlet obstruction, and an endoscopic foraminoplasty was attempted through a posterolateral approach.

Endoscopic Posterior Fossa Cyst Fenestration
Beneath the aqueduct of Sylvius the median sulcus and eminences were seen, alongside the inferior fovea and area postrema. The cyst walls and underlying membrane were fenestrated, initially to the left and right of the brainstem, in an attempt to create two artificial foramina of Luschka. The first cervical rootlet and the branches of the posterior inferior cerebellar artery were seen through the left stoma and vertebral artery and the
hypoglossal nerve through the right. The pulsating movements and
the optical confirmation of the fenestration of all membranes
was considered as a sign of adequate cerebrospinal fluid
movement. The stoma size was approximately 2mm (diameter of open
Decq forceps). An additional fenestration in the anatomical
location of the foramen of Magendie was performed. This part
presented a challenge due to the close relationship between the
neural structures and the cyst’s wall. A biopsy clamp was used
in order to grasp the membrane while moving away from the neural
tissue during the pulsation cycles. This resulted in avulsion
of a minor vascular vessel. Forced irrigation was employed in
order to achieve hemostasis but this was not sufficient.
Subsequently a diathermy electrode was used to apply direct
compression to the vessel without cauterization. Hemostasis was
finally achieved. The early post-surgery period was uneventful.

Follow-up
Post-surgery MRI after 3 weeks revealed a reduction of the cyst’s
total volume with no significant change at the supratentorial
ventricular system. A month post-surgery the toddler presented
with a gradual consciousness deterioration, thus an Endoscopic
Third Ventriculostomy and a fenestration of the tentorium was
planned.

ETV and Tentorium Fenestration

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
The third ventricle floor was thick, and the recognition of the exact borders of the mamillary bodies was challenging. The third ventricle floor was fenestrated using a Decq forceps revealing the hypophyseal tissue beneath, thus the stoma was widened toward the mamillary bodies. The underlying web-like Lilequist membrane was also fenestrated and the clivus was visualized, ensuring the successful communication of the ventricular system with the subarachnoid space. Pulsatile movements confirmed the successful communication between the spaces. A fenestration was placed also on the tentorium.

Follow-up

One-month post-surgery the patient presented with a rapid head circumference increase. MRI confirmed the enlargement of the ventricular system and showed the presence of bilateral subdural collections.

Fenestration of tentorium and endoscopically assisted VP-shunt placement into the posterior fossa

A left Kochers’ point burr hole was used. The previous tentorial fenestration could not be detected; thus, a new one was created but towards the tentorial hiatus this time, in proximity with the left internal cerebral vein. The posterior fossa was observed through the stoma in order to ensure communication between the compartments. A VP-shunt catheter was introduced

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
under endoscopic guidance, as a stent through the new fenestration and into the posterior fossa cyst. A programmable valve was adjusted to an opening pressure of 8cmH₂O. Early post-surgery period was uneventful. Ultrasonographic evaluation revealed the collapse of the ventricular system and the subsequent enlargement of the subdural collections. The valve was re-adjusted to 12cmH₂O in an attempt to enlarge the ventricular system with subsequent obliteration of the subdural spaces. That proved inadequate and the next stage was to insert a right subdural catheter connected to a second valve and a second peritoneal catheter. The seconds’ valve initial setting was set to zero. The child was discharged in good condition with a significant developmental delay and persistent hypotonia. The follow-up extended for an additional period of 18 months. There was no need for an additional treatment. Despite the subdural-peritoneal shunt there was no significant change in the diameter of the subdural hygromas.

Discussion
DWM presents a group of congenital posterior fossa malformations associated with conditions affecting the early brain development, including exposure to infectious and teratogenic agents(2) (4th-7th gestation week), and chromosomal abnormalities (mostly on chromosomes 3,9,13,18)(3). The presented case had a
negative TORCH and endocrinology screening, chromosome analysis was normal and the mothers’ medical history was unremarkable.

There is a variety of cystic lesion located in the posterior fossa incl. DWM, arachnoid cysts, Blakes’ pouch syst and a prominent cisterna magna. The presented malformation is classified as a Barkovich Type A or a “real”, “true” DWM(4). This is based on the presence of an evident communication between the posterior fossa CSF and the fourth ventricle, alongside the absence of a visible vermis on MRI/CT imaging. The diagnosis is ultrasonographical and may be established in utero since 14 gestation week(5). Here the diagnosis was established on the first trimester ultrasound.

The therapeutic approach in these patients consists of treating the associated problems. Hydrocephalus is a common finding (>80% of patients), especially during the first 3 months post-partum(6). This was mainly related to the obstruction of the fourth ventricle and the ventricle outlets(4). However, literature has shown that this is a multifactorial entity, with some patients presenting a partial obstruction or no obstruction(7, 8). We should highlight that CSF dynamics and pathophysiology of hydrocephalus is not yet completely understood(9). Some have proposed the importance of venous hypertension, associated with direct pressure and lengthening of the venous sinuses due to the elevation of the anatomical structures, however this remains an unproven assumption(1).
introduction of a VP-shunt remains the typical management (10). Commonly a ventricular catheter and a cyst catheter were connected with a Y connector and then with one valve and a distal catheter. Others have used two separate valve systems, one for the supratentorial ventricles and a second for the cysts. These multiple catheters, with connectors or dual valve systems have been proven to be more prone to dysfunction and subsequent revisions are more challenging (11). ETV is considered an acceptable alternative in older children (4). Other approaches including the introduction of a ventriculo-cysto-peritoneal shunt alone (10), or in combination with a VP-shunt (12), microsurgical exploration and foraminoplasty of outlet foramina (13), or endoscopic transaqueductal approach (14) may be found in the literature. Cyst membrane excision is not employed routinely anymore and is reserved for cases where other treatments have been unsuccessful. In this case the Magendie and Lushka foraminoplasty, thus CSF-flow obstruction elimination, was selected as a more physiological approach. The endoscopic suboccipital approach has been described afore (1), however, according to our knowledge the suboccipital lateral approach and foraminoplasty of Lushka and Magendie, as described, has not been previously presented in the literature. The post-surgery total cyst volume reduction confirmed the efficacy of the technique. We cannot provide a definitive explanation regarding the persistent imaging findings regarding
the supratentorial ventricular system. This finding could defy the patency of the aqueduct, could point toward a partial communication, or could present a novel disruption of CSF flow. One-month post-surgery the toddler presented with signs of hydrocephalus. An ETV and fenestration of the tentorium were performed. ETV has become a treatment of choice in selected patients, even though the anatomical understanding of the third ventricle floor is limited (15) and the exact mechanism leading to resolution of symptoms after ETV has not been exactly defined (9). Some authors have also proposed the additive effect of Choroid Plexus coagulation (16). As the patency was brought into question, the tentorium was fenestrated in order to create a communication between the subarachnoid space, the ventricular system and the posterior fossa cystic formation. However, the employed technique provided also a communication with the subdural space, due to the fenestration of the tentorium and the conduction of the ETV, a fact that could provide an explanation to the formation of the persistent subdural hygromas on the following imaging investigation, especially in case of reabsorption failure through the subarachnoid space. The last could be potentially associated with age related anatomical variations regarding the number and function of arachnoid villi, or due to hydrodynamic disbalance associated with hemorrhage or other factors associated with potential chemical disruption of CSF (9). Other authors have proposed the endoscopically assisted
placement of a stent through the aqueduct when the patency is
defied(17). A month post-surgery the patient presented with
signs of hydrocephalus. A shunt catheter was placed in the
posterior fossa under endoscopic guidance. Additional openings
were created on its surface in order to achieve a stent like
function ensuring the communication of the cyst with the
ventricular system. The previous fenestration was not detected,
a fact that could be potentially associated with hydrocephalus
recurrence. An additional catheter was also placed in the right
subdural hygroma. The child was discharged in good condition,
without any change in her neurological image. There was no need
for reintervention during the 18-month follow-up.

Conclusion

VP-shunt placement remains the treatment of choice for
hydrocephalus in DWM patients. ETV (+/- CPC) may be considered
in older children. Foraminoplasty seems to be ineffective, thus
we do not advise its’ use. Artificial communication of the
subarachnoid place, the ventricular system, the posterior fossa
cyst and the subdural space may result in the formation of
subdural hygromas. A staged approach may be necessary in complex
hydrocephalus cases.

Conflicts of Interest Disclosure

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
The authors have no conflict of interest to disclose.

Statement of Ethics: Written informed consent regarding publication of data and images was acquired from both of the parents of the infant. The provided neuroradiological depictions were anonymized in order to secure patient identity with respect to the General Data Protection European Union Regulation 2016/679. The conduction of the study is in accordance to the World Medical Association Declaration of Helsinki. No Ethical Committee approval is required as this is an observational retrospective study.
References

© Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Open access articles under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.

Video 1. A video presentation of the case including imaging (MRI and CT) alongside intraoperative footage.