Therapeutic potential of cannabinoids for stroke: scoping review protocol

Running head: Therapeutic potential of cannabinoids for stroke

Iván Pérez-Neri¹*, M. Dulce Estêvão², Rakesh Mishra³, Hugo Sandoval⁴, Manuel Zárate⁵, Camilo Ríos¹

¹Department of Neurochemistry. National Institute of Neurology and Neurosurgery Manuel Velasco Suárez. Insurgentes Sur 3877; La Fama, Tlalpan. Ciudad de México, 14269, México. ORCIDs: 0000-0003-0190-7272, 0000-0002-3216-0119
²Escola Superior de Saúde da Universidade do Algarve. Campus de Gambelas. 8005-139 Faro, Portugal. ORCID: 0000-0002-7151-8363
³Department of Neurosurgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
⁴General Directorate. National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra. Calzada México- Xochimilco 289; Arenal de Guadalupe, Ciudad de México, México. ORCID: 0000-0002-9622-1558
⁵Universidad Autónoma de Baja California, Campus Mexicali,
Avenida Alvaro Obregón, s/n, Nueva, 21100, Mexicali, B.C.

*Correspondence: Iván Pérez-Neri, PhD. Department of Neurochemistry. National Institute of Neurology and Neurosurgery Manuel Velasco Suárez. Insurgentes Sur 3877; La Fama, Tlalpan. Ciudad de México 14269, México. 5606 3822 ext 2005. ipneri03@gmail.com

Authors' contributions

I.P.N. provided methodological expertise, contributed to designing protocol’s methodology (including the search strategy), coordinated co-author’s participation and activities, corrected and approved the final draft, documenting and will implement possible future protocol amendments if necessary, and is the guarantor of the review.

R.M., and M.D.E. contributed with topic expertise, designing protocol’s methodology (including search strategy), corrected and approved the final draft. H.S. provided methodological expertise and contributed to designing protocol’s methodology (including search strategy peer-review), corrected and approved the final draft. M.Z. Provided topic expertise, contributed to designing protocol’s methodology, revised and approved the final draft. C.R. provided topic expertise and
contributed supervising the reviewer team, revised and approved protocol’s methodology and final draft.

Conflicts of interest

I.P.N. is an Editor for Archivos de Neurociencias.

Funding

This protocol did not receive funding from any academic or governmental entity.

Acknowledgements

The authors want to thank Ana Paulina Murillo López for contributing to protocol development.
Abstract

Introduction: Each year, approximately 795,000 people experience a new or recurrent stroke, ischemic or hemorrhagic. The current therapeutical approach for acute ischemic stroke includes thrombolysis and mechanical thrombectomy. However, no neuroprotective treatment options exist to improve its neurological outcome. In addition, some components of the endocannabinoid system are altered after ischemic stroke. It is considered that cannabinoids may exert neuroprotective effects; however, the use of cannabinoid receptor ligands is a major concern due to their psychotropic properties. Regardless of the many studies describing the benefit of administering cannabinoids for experimental stroke several unanswered questions remain since most information points to non-human species. A previous systematic review detected significant heterogeneity among studies, so it is appropriate to perform a scoping review to evaluate the feasibility of performing an updated systematic review and meta-analysis. This scoping review protocol aims to evaluate the therapeutic potential of modulating the endocannabinoid system for stroke. Methods: Published studies
(all publication types) will be retrieved from Web of Science, PubMed, Scopus, Ovid, EBSCOhost, and Google Scholar. **Eligibility criteria:** Clinical or preclinical studies reporting endocannabinoid levels or their effects, or reporting administration of cannabinoid modulators (stimulating or inhibiting their synthesis or metabolism, phytocannabinoids, or synthetic cannabinoids) in patients or models of stroke will be considered for inclusion. Studies written in languages different than Spanish or English that could not be appropriately translated or whose full-text files could not be retrieved will be excluded. **Data charting:** Results will be summarized in tabular form. This protocol complies with PRISMA-P.

Keywords

Phytocannabinoid; Endocannabinoid; Stroke; Ischemia; Artery occlusion

Introduction

Overview of Cannabis spp use

Medical research has been following up on marijuana for its possible therapeutic effects due to its cannabinoid (CB) content.
In the United States, a total of 47 states had allowed the medical use of Cannabis spp by the end of 2020; nevertheless, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) application may be limited for some medical conditions such as end-stage cancer, amyotrophic lateral sclerosis, multiple sclerosis, seizure disorders, Crohn’s disease, mitochondrial diseases, Parkinson’s disease, and sickle cell disease, among others.

Cannabis spp continues to be the most widely used drug worldwide. The United Nations Office on Drugs and Crime estimates that almost 4 percent of the global population aged 15–64 years used Cannabis spp at least once in 2019, approximately 200 million people. In addition, synthetic cannabinoids (either one of them or their mixture) are also used for recreational purposes.

Stroke

Each year, about 795,000 people experience a new or recurrent stroke. Approximately 610,000 of these are first attacks, and 185,000 are recurrent attacks. Among major stroke types, about 87% are ischemic, 10% are intracranial hemorrhage (ICH), and 3% are subarachnoid hemorrhage (SAH). Stroke is a leading cause of severe long-term disability in the United States. Approximately 3% of males and 2% of females reported being disabled because of a stroke. Between 2015 and 2035, total...
direct medical stroke-related costs are projected to increase more than 2-fold, from $36.7 billion to $94.3 billion, with much of those costs arising from people ≥80 years of age⁴.

The current therapeutical approach for acute ischemic stroke includes thrombolysis and mechanical thrombectomy. However, no neuroprotective treatment options currently exist to improve neurological outcomes after ischemic stroke. Moreover, some patients experienced a reduced quality of life after stroke, which may be related to some degree of disability, speech disturbances, cognitive impairment, and reduced mood, among other sequelae⁵.

The endocannabinoid system (ECS), integrated by endogenous ligands, cannabinoid receptors, and degrading enzymes, has been proposed as an important pharmacological target in several neurological diseases⁶.

Potential of cannabinoids for stroke therapeutics

It is unclear the effect of Cannabis spp use on stroke incidence⁷. Cannabis spp use is not associated with increased stroke incidence, according to some studies⁸, although these results may be debated⁹. Also, it is not associated with the worst outcomes in patients with SAH, according to some studies. However, the incidence of some complications may be higher in endovascular-treated Cannabis spp users¹⁰.
However, stroke may occur in young *Cannabis spp* users that do not show cardiovascular risk factors. Also, 80% of patients with problematic *Cannabis spp* use may develop post-stroke depression. Synthetic cannabinoid consumption may cause some neurological symptoms, including somnolence, paresthesia, vertigo, psychomotor retardation, seizures, aggressive behavior, and rhabdomyolysis, but is not associated with stroke.

The relationship between the mechanism of action of *Cannabis spp* and its adverse effects remains unclear. Substantial evidence suggests that chronic *Cannabis spp* consumption, especially during adolescence, is associated with later development of schizophrenia, and several other psychiatric disorders, including depression, bipolar disorder (mania), anxiety disorders, and antisocial personality disorder. There are limited data regarding the safety of CBs in humans and none in the stroke population.

Some components of the ECS are altered after ischemic stroke. For example, the expression of cannabinoid CB1 and CB2 receptors is up-regulated in the rat brain after cerebral ischemia, indicating that the ECS may have an important role in the endogenous response to stroke. A THC:CBD formulation is currently being tested in controlled clinical trials to treat spasticity after stroke; it may also be beneficial for post-

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
stroke pain, according to a case report15.

It is considered that cannabinoids may exert neuroprotective effects16. Most results on this topic come from preclinical research. It has been reported that CB receptor ligands (either endocannabinoids, phytocannabinoids, or synthetic cannabinoids) reduce infarct volume after either transient or permanent ischemia in both rats and mice. However, the effect in non-human primates was non-significant13. In particular, it has been shown that CBD reduced infarct size in an ischemia/reperfusion rodent model17. Also, an improved neurological outcome (but not survival) was observed according to other studies13.

Some studies suggest that activation of the CB1 receptor triggers a neuroprotective effect while that of the CB2 receptor is neuromodulatory, although this conclusion might be debated. However, the use of CB1 receptor ligands is a major concern due to its psychotropic properties16. It has also been shown that the deletion of the CB1 receptor increases infarct size, excitotoxicity, and neurological deficits in ischemia models18.

Additional evidence suggests that CB2 ligands lack some CB1-mediated side-effects and may be neuroprotective in models of stroke and other diseases. JWH133, a synthetic CB2 receptor agonist, reduces infarct size, infiltrating neutrophils, myeloperoxidase activity, secretion of inflammatory cytokines,
inducible nitric oxide synthase expression, and motor deficits in either transient or permanent ischemia models16. This substance reduces glutamate release, possibly preventing excitotoxicity. Also, it reduces brain edema and blood-brain barrier damage in models of hemorrhagic stroke16.

Palmitoylethanolamide, an endogenous cannabimimetic, reduces infarct size and neuron loss, possibly by diminishing the inflammatory response to anoxia after ischemia-reperfusion in experimental models19. In addition, blood levels of this substance correlate with neurological deficits after stroke in humans19. Also, some studies suggest that its administration improves cognition and spasticity in patients with stroke19. However, its effects may be mediated, at least in part, by the peroxisome proliferator-activated receptors 20; these receptors may modulate CB1 receptor activity21.

Some synthetic cannabinoids (e.g., HU-211) may remain effective when administered several hours after stroke onset13. On the other hand, it is still unclear the effect of CB receptor antagonism in stroke13.

Although many studies describe the benefits of administering cannabinoids for experimental stroke, a few unanswered questions remain since most results were observed in non-human species. In this context, this study aims to analyze the available evidence
of the therapeutic potential of endocannabinoids, phytocannabinoids or synthetic cannabinoids, as well as their side effects, possible impact on financial costs and quality of life, in patients with stroke.

Rationale for the study

The neuroprotective potential of cannabinoids for stroke has been recently described in a narrative review, but no systematic approach was applied. In addition, a systematic review and meta-analysis of the effect of cannabinoids in experimental stroke (with 111 retrieved studies from four databases) was published in 2015, but did not include any human studies. Also, a systematic review about synthetic cannabinoids has been reported but did not evaluate their role in stroke.

A scoping review protocol of current clinical and preclinical evidence for using of both natural and synthetic CBs in stroke, using a more comprehensive and updated search strategy, is valuable. A previous systematic review detected significant heterogeneity among studies, so it seems appropriate to perform a scoping review to evaluate the feasibility of performing an updated systematic review and meta-analysis.
Methods

Protocol development

This methodology is based on a previous protocol22, but it is not an update of any previous review. After elaborating on the research question for this project, we used an online tool to define the appropriate type of review article, as previously reported23, and the result was scoping review (https://whatreviewisrightforyou.knowledgetranslation.net/map/results?id=5413&code=GAkWQRoevx).

The International Prospective Register of Systematic Reviews (PROSPERO), the Clinical Online Network of Evidence for Care and Therapeutics (JBI CO\textsc{n}NECT+), and Open Science Framework (OSF) were consulted to identify ongoing protocols for systematic or scoping reviews related to our main research question (July 17th, 2021) but no relevant records were found.

This protocol was drafted by the research team and revised as necessary. Supporting materials (checklists and forms) are available through the OSF (https://osf.io/8erk4/?view_only=142c7bd4f3b84f51bef04eab1baaab58) as previously reported24 (registration date Nov. 16th, 2021; last updated Feb. 17th, 2022).

Our research team is composed of researchers with different
profiles: clinical researchers, preclinical researchers, and socio-medical researchers. This protocol complies with the JBI Manual for Evidence Synthesis25, and the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA 202026), complemented with the PRISMA extensions for abstracts (PRISMA-A27), protocols (PRISMA-P28), search strategies (PRISMA-S29), and scoping reviews (PRISMA-Scr30). Those guidelines were applied as much as suitable for a scoping review protocol.

Objectives

The primary objective of this study is to evaluate the therapeutic potential of modulating the ECS for stroke. Secondary objectives are as follows:

- To evaluate the therapeutic potential of either endocannabinoids, phytocannabinoids, or synthetic cannabinoids for stroke.
- To describe possible interactions between either endocannabinoids, phytocannabinoids, or synthetic cannabinoids with conventional treatments for stroke.
- To describe possible side-effects of either phytocannabinoids or synthetic cannabinoids.
- To estimate the possible financial cost of cannabinoid-based therapies.
treatment for patients with stroke.

- To estimate the possible impact of either endocannabinoids, phytocannabinoids, or synthetic cannabinoids, on quality-of-life in patients with stroke.

Research questions for this review are described in Table 1.

Search strategy

The search strategy was elaborated by a trained researcher and was peer-reviewed using the PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. Published studies (all publication types) will be retrieved from Web of Science (Clarivate), MEDLINE (PubMed), Scopus, Ovid, and EBSCOhost (Academic Search Ultimate), from the database inception to the present. Also, the first 100 results from Google Scholar (https://scholar.google.com/), sorted by relevance without citations, will be retrieved using Publish or Perish.

Databases to be consulted, their providers, and dates of coverage are listed in Appendix A (https://osf.io/8erk4/?view_only=142c7bd4f3b84f51bef04eab1baaab58). Authors of the retrieved studies will be contacted if

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
necessary. Collections from the authors of the present manuscript will also be considered. No additional sources will be consulted. No limits or filters will be applied.

Search algorithms were elaborated using an online tool and are publicly available (https://app.2dsearch.com/new-query/612a734d758bc70004e35990). Furthermore, those algorithms were adjusted when necessary, for each database, during the line-by-line analysis, which is described in Appendix B (https://osf.io/8erk4/?view_only=142c7bd4f3b84f51be04eab1baaab58).

Articles written in languages other than English and Spanish will be included if adequately translated using Google Translate and/or DeepL, or if appropriate translations are found. Gray literature will be consulted through the Conference Proceedings Citation Index-Science (Web of Science Core Collection) and OpenDissertations (EBSCOhost).

Selection for studies

Retrieved references will be de-duplicated using Rayyan QCRI's default algorithm, complemented with Zotero and Endnote. Identified duplicates will be manually revised to confirm duplicated publications and will be eliminated.

Two independent researchers will assess all references for
eligibility using Sysrev according to predefined criteria. A third researcher will solve the discrepant decisions. Inter-rater reliability will be calculated using Sysrev’s concordance tool37. Two screening stages will be performed: Title/Abstract, and Full-text; each screening stage will be pilot-tested with a random sample of 25–50 studies25,38.

Studies selected for inclusion will be retrieved using the Retraction Watch database (http://retractiondatabase.org/) to identify retracted studies, which will be eliminated. After twelve months, the search strategy will be rerun to identify more recent studies for possible inclusion. Results from the search strategy will be described in a PRISMA flow diagram.

Eligibility criteria

Inclusion criteria

- Clinical or preclinical studies reporting endocannabinoid levels in any biological sample or tissue, assessed by any imaging or biochemical method, in stroke patients or experimental models.
- Clinical or preclinical studies reporting administration of endocannabinoid modulators (stimulating or inhibiting their synthesis or metabolism, any pharmacological regime) in

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
stroke patients or experimental models.

- Clinical or preclinical studies reporting the effect of either phytocannabinoid or synthetic cannabinoids (any pharmacological regime) in stroke patients or experimental models.

- Clinical or preclinical studies showing an effect of stroke on endocannabinoid levels in the blood and/or the brain of patients or experimental animals.

- No specific diagnostic criteria for stroke will be considered if the studies describe their population as presenting the condition, as previously reported.

- The analysis will not be limited to any clinical setting. All quantitative, qualitative, or mixed-method studies will be considered for inclusion.

Exclusion criteria

- Studies written in languages other than Spanish or English that could not be appropriately translated using Google Translate and/or DeepL.

- Studies whose full-text files could not be retrieved.

Eligibility criteria may be adjusted during the screening...
process, as previously reported24. Adjustments will be applied to all studies and reported accordingly.

Data charting

Variables for charting include age [years (humans), bodyweight or months (experimental animals), gender (male/female), cannabinoid class (phyto-, endo-, synthetic), dose, duration of treatment, study type (clinical study, experimental model or theoretical study), species analyzed and their respective strains and/or genetic modifications (cell culture, rodents, non-human primates), type of stroke (ischemic, hemorrhagic, other), disease stage, therapeutic effect (survival, neurological deficit, infarct size), pathophysiological mechanisms (oxidative stress, cell death, excitotoxicity), interaction with conventional treatment (present, absent), cannabinoids’ side-effects, patients’ comorbidities, quality-of-life measures. Only original research studies are eligible for these charting methods. The therapeutic effect is the main outcome of this review. No data will be extracted from the figures.

Data will be reported in the units of their original report; no conversions will be applied. Unclear information will not be considered. Data will be extracted by two independent researchers.
using Sysrev; a third researcher will solve discrepancies. Inter-rater reliability will be calculated using Sysrev’s concordance tool. This process will be pilot-tested with a random sample of 25-50 studies.

Data synthesis

All studies are eligible for narrative synthesis. Results will be summarized in tables. Clinical and preclinical studies will be analyzed separately but may be discussed together. Preclinical studies will be discussed by study type (cell culture, rodent models, non-human primates). No statistical synthesis will be applied.

Strengths and limitations of the present protocol

This scoping review will provide an integrative perspective of the therapeutic potential of cannabinoids for stroke based on both clinical and preclinical studies. Also, possible side-effects of this treatment were included to assess an objective recommendation of its use. Finally, the costs of current treatment for this disease will be included --when possible-- to evaluate its application’s possible generalization.

In contrast to other protocols, our research question
complies with a systematic framework supporting our search strategy, which was peer-reviewed. An effort will be made to include articles written in any language. The multidisciplinary research group provides complementary perspectives from several profiles. This protocol complies as much as possible with several guidelines, including some for systematic reviews (PRISMA 2020, PRISMA-P, PRISMA-S, PRISMA-A) and not only those for scoping reviews (PRISMA-Scr, JBI Manual for Evidence Synthesis).

Only a narrative analysis of the evidence will be presented. No risk-of-bias analysis or certainty of evidence assessment will be considered. The heterogeneity of the included studies may be a strength since it allows an exhaustive analysis of the research topic. However, it is also a limitation since this might preclude performing a systematic review of intervention or meta-analysis.

Legends

Table 1. Research questions for this systematic scoping review.

<table>
<thead>
<tr>
<th>Question type</th>
<th>Framework</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main research</td>
<td>CoCoPop Framework</td>
<td>What is the therapeutic</td>
</tr>
</tbody>
</table>

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
<table>
<thead>
<tr>
<th>Secondary research question</th>
<th>CoCoPop Framework</th>
<th>What is the therapeutic potential (Co) of endocannabinoids, phytocannabinoids or synthetic cannabinoids (Co) in patients with stroke (Pop)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary research question 2</td>
<td>CoCoPop Framework</td>
<td>Is there any interaction between (Co) endocannabinoids, phytocannabinoids, or synthetic cannabinoids with conventional treatment (Co) for stroke patients (Pop)?</td>
</tr>
<tr>
<td>Secondary research question 3</td>
<td>CoCoPop Framework</td>
<td>What are the possible side-effects (Co) of potential (Co) of modulating the endocannabinoid system (Co) in patients with stroke (Pop)?</td>
</tr>
</tbody>
</table>

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.
Secondary research question 3	**Condition, Context, Population**	phytocannabinoids or synthetic cannabinoids (Co) in patients with stroke (Pop)?
Secondary research question 4	**CoCoPop Framework** (Condition, Context, Population)	What could be the financial cost (Co) of cannabinoid-based treatment (Co) in patients with stroke (Pop)?
Secondary research question 5	**CoCoPop Framework** (Condition, Context, Population)	What is the effect (Co) of endocannabinoids, phytocannabinoids, or synthetic cannabinoids on quality-of-life measures (Co) in patients with stroke (Pop)?

References

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.

25. Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis. JBI; 2020

© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.

33. editors. Improving efficiency and confidence in systematic literature searching. European Association for Health Information and Libraries (EAHIL).

