
Arch Neurocien (Mex)| ISSN 1028-5938 | Volume 27, Number 2, year 2022 archivosdeneurociencias.org |  11

“© The authors. 2022. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) 
license, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. No commercial re-use is allowed.”

Article original received 21 September 2021| accepted 27 October 2021| published 24 May 2022

Doi:10.31157/an.v27i2.326

Alam Farwah B. 1 | González-Giraldo Yeimy 2 | Forero Diego A.3,4✉

1. North South University, Dhaka, 
Bangladesh

2. Center for Psychosocial Studies for 
Latin America and the Caribbean, 
Universidad Antonio Nariño, Bogo-
tá, Colombia. 

3. Health and Sport Sciences Research 
Group, School of Health and Sport 
Sciences, Fundación Universitaria 
del Área Andina, Bogotá, Colombia.

4. Professional Program in Respiratory 
Therapy, School of Health and Sport 
Sciences, Fundación Universitaria 
del Área Andina, Bogotá, Colombia.

Correspondence

Prof. Dr. Diego Forero, MD, PhD. 
Professor and Research Leader, School 
of Health and Sport Sciences, Funda-
ción Universitaria del Área Andina, 
Bogotá, Colombia. 

✉ dforero41@areandina.edu.co

Bioinformatic Analysis of Epigenomic 
Studies for Major Depressive Disorder

Abstract

Background: Major depressive disorder (MDD) is a common psychiatric entity, being characterized 
by alterations in mood and in other clinical dimensions. Several epigenome-wide association studies 
(EWAS) for MDD have been published. Here, we aimed to identify common genes in EWAS and their 
convergence with multiple lines of genomic evidence. Methods: We carried out a computational 
analysis using data of EWAS, which included a meta-analysis for brain samples of MDD, a convergence 
analysis for brain and blood samples, and top results from available genome-wide expression and 
association data. Functional enrichment and protein-protein interaction network analyses were also 
performed. Results: The meta-analysis for brain samples detected a significant gene, FAM53B. A 
list of forty-four top differentially methylated (DM) candidate genes was found, including GRM8, 
NOTCH4 and SEMA6A, in addition to known druggable genes. The binding-sites for brain-expressed 
transcription factors, CREB and FOXO1, were enriched in the top DM genes. The protein-protein 
interaction networks showed that DM genes for MDD, such as RPRM and TMEM14B, play a central 
role. Conclusion: In this study, we found integrative evidence for the possible role of novel candidate 
genes and pathways. These genes are involved in mechanisms of synaptic plasticity, which have been 
associated with several psychiatric disorders. Analysis of epigenetic factors have a great potential for 
the identification of the mechanisms involved in the pathogenesis of MDD, taking into account their 
possible role in the interaction between genetic factors and the environment.

Keywords: Epigenomics, DNA Methylation, Psychiatric Genomics, Bioinformatics, Major depressive 
disorder.

Introduction

Major depressive disorder (MDD) is a common psychiatric 
entity, being characterized by alterations in mood and in 
other clinical dimensions, which lead to functional impairment 
in patients.1 MDD has an average 12-month prevalence 
of around 6%1 and an estimated heritability of 35–45%.2 
A secondary analysis of available global data has shown that 
the number of incident MDD cases increased from 172 to 258 
million in the 1990-2017 period, being one of the psychiatric 
disorders with the largest impact on burden of disease.3 

In recent years, several genome-wide analyses have been 
carried out to identify the molecular risk factors associated with 

MDD,2 as well as multiple genome-wide association studies 
(GWAS)4 and genome-wide expression studies (GWES).5 
In this context, epigenetic mechanisms have been of 
interest in the study of the pathogenesis of MDD, as a 
possible way of finding the interaction between genetic 
factors and environmental variables (such as psychological 
stress).6 Among several epigenetic factors, the analysis 
of DNA methylation levels has been studied for multiple 
psychiatric disorders, primarily because of the negative 
correlation that is found between DNA methylation in 
promoter regions (in CpG islands) and gene expression.7

Epigenome-wide association studies (EWAS) have appeared 
as important strategies for the analysis of DNA methylation 
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levels across the genome, based on available microarray 
platforms that include hundreds of thousands of probes.6 
Several EWAS for MDD and related phenotypes have been 
published,8,9 but there is the need for a bioinformatic analysis 
of the convergence of results from several available EWAS 
with other genomic evidence.5,10 In this study, we carried out 
a computational analysis of available genome-wide DNA 
methylation studies for MDD and their convergence with 
multiple lines of genomic evidence. In addition, we performed 
a meta-analysis for detecting differentially methylated genes 
in brain samples from subjects with MDD, considering the 
advantage of this approach to increase statistical power and 
to obtain more precise results through the combination of 
individual studies.11  

Methods

Data processing and convergence analysis of EWAS in 
brain and blood samples
The NCBI GEO database, an online repository for microarray 
data,12 was used to obtain raw data from available epigenome-
wide association studies for MDD. Data from five EWAS were 
extracted from the following published articles: Guintivano, 
2013;9 Chen, 2014;13 Murphy, 2017BA11 and Murphy, 

2017BA25 (both from the same article)14 and Crawford, 
201815 (Table 1). The genome-wide DNA methylation data 
obtained were used to generate two groups for comparison 
(MDD patients and control subjects), which were then 
analyzed using the GEO2R tool12 to identify the differentially 
methylated (DM) probes for each study. The annotation files 
from the NCBI GEO database were used for the mapping 
from microarray probes to human gene identifiers. Convergent 
differentially methylated genes in these studies were revealed 
using the Venn diagram tool (http://bioinformatics.psb.ugent.
be/webtools/Venn).

Meta-analysis of EWAS in brain samples 
Additionally, a meta-analysis was performed using the robust 
rank aggregation (RRA) method in the R program.16 In this 
analysis, four studies that analyzed DNA methylation in 
brain tissue samples were included (Table 1). The R package 
“RobustRankAggreg” was employed following the previously 
described protocol.17 For the current study, the list of significant 
DM genes identified by GEO2R was used, which were ranked 
according to their P values. The RRA method allows to integrate 
data from different studies and methodologies, and uses a 
prioritized list of genes.16 An adjusted P value of <0.05 was 
considered significant in this analysis. 

Table 1. Details of EWAS included

Author, Year NCBI GEO Tissue Sample size Platform PMID

Guintivano, 2013 GSE41826 Frontal cortex 49 MDD and 49 
controls

Illumina Human Methylation 450K 
Beadchip (GPL13534) 23426267

Chen, 2014 GSE38873 Cerebellum 17 MDD and 17 
controls

Illumina Human Methylation 27K 
Beadchip (GPL8490) 25243493

Murphy, 2017BA11 GSE88890 Frontal cortex, 
Brodmann area 11

20 MDD and 20 
controls

Illumina Human Methylation 450K 
Beadchip (GPL13534) 28045465

Murphy, 2017BA25 GSE88890 Frontal cortex, 
Brodmann area 25

17 MDD and 18 
controls

Illumina Human Methylation 450K 
Beadchip (GPL13534) 28045465

Crawford, 2018 GSE113725 Whole Blood 49 MDD and 48 
controls

Illumina Human Methylation 450K 
Beadchip (GPL13534) 29790996

Abbreviations: PMID: PubMed identifier; NCBI GEO: NCBI GEO database identifier.
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Convergence analysis for common genes in EWAS and 
other genome-wide studies 
Records of significant genes from genome-wide expression 
studies were extracted from a published meta-analysis of 
GWES for MDD patients and controls (amygdala, anterior 
cingulate cortex, cerebellum and prefrontal cortex).18 Lists 
of significant genes were also extracted from genome-wide 
association studies for depressive symptoms,19 personality 
traits 20 and for the case-control design for MDD.21 
The significant genes obtained from EWAS for MDD, GWAS 
for depressive symptoms, GWAS for case-control studies 
of MDD, GWAS for personality traits and meta-analysis of 
GWES for MDD were analyzed for their convergence, using 
an online tool (http://bioinformatics.psb.ugent.be/webtools/
Venn). The genes found on convergence were compared 
with the following available lists: genes known to harbor 
mutations for neuropsychiatric disorders22 and genes that are 
highly expressed in human astrocytes and oligodendrocytes.23

Enrichment analysis for convergent genes in EWAS
A functional enrichment analysis was carried out using the 
DAVID online tool, version 6.8,24 for the following categories: 
Transcription Factor Binding Sites (TFBS) and Tissue Expression 
(GNF U133A). The significant genes (that were convergent 
in five EWAS) were compared with the rest of the genome 
by using a Fisher exact p value, including a correction for 
multiple testing using a False Discovery Rate (FDR) method. 
In the case of TFBS, the significant genes were analyzed for their 
convergence with transcription factors expressed in the brain.25 

Protein-protein interaction network for convergent genes 
in EWAS
An examination of the experimentally validated protein-protein 
interactions (PPI) was conducted using the online database of 

Guintivano,2013 Chen,2014 Murphy,2017BA11 Murphy,2017BA25 Crawford,2018

171 DM genes

638 DM genes

67 DM genes

140 DM genes

65 DM genes

232 DM genes

the Human Interactome Project 26 for the significant genes that 
were convergent in EWAS included in this work. The program, 
Cytoscape 3.8.0,27 was used to visualize these interactions, in 
which a connected subnetwork system, using >2 edges, was 
employed,28 along with a degree filter (In + Out) of 30-292.

Results

Genome-wide DNA methylation data were extracted from 
5 EWAS for MDD, which had samples from different brain 
regions and whole blood (Table 1). Significant genes from 
the five EWAS were analyzed; results showed one hundred 
and seventy-one genes that were differentially methylated 
in common between the 5 EWAS. Combinations of 4 
EWAS identified sixty-five to six hundred and thirty-eight 
common DM genes (Figure 1, Table S1A). Also, we carried 
out a meta-analysis for studies performed in brain samples 
using the robust rank aggregation method. Only one gene, 
FAM53B (family with sequence similarity 53 member B), 
was identified as significant (Score: 3.3085, P= 0.0160).

A merging of convergent genes from EWAS for MDD with 
genes available from 1) GWAS for depressive symptoms, 
2) GWAS for case-control studies of MDD, 3) GWAS for 
personality traits and 4) meta-analysis of GWES for MDD, 
resulted in a list of 44 top candidate genes (Table 2), including 
NOTCH4 (Neurogenic locus notch homolog protein 4) and 
SEMA6A (Semaphorin-6A). A number of these 44 genes 
have been found to harbor mutations for neuropsychiatric 
disorders (Table S2), such as COL4A2 (Collagen alpha-2(IV) 
chain) and RELN (Reelin); and to be enriched in astrocytes and 
oligodendrocytes (Table S2), such as FAM107B (Protein Family 
With Sequence Similarity 107 Member B) and TNS3 (Tensin-3).

Figure 1. Overview of differentially methylated (DM) genes from five EWAS for MDD.
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Gene Protein Name Evidence Gene Protein Name Evidence

ASIC2 Acid-sensing ion channel 2 GWASD, GWESM PIEZO2
Piezo-type 

mechanosensitive 
ion channel

GWASM, GWESM

C3orf70 UPF0524 protein C3orf70 GWASM, GWESM PTDSS2 Phosphatidylserine 
synthase 2 EWAS, GWESM

CDO1 Cysteine dioxygenase type 1 GWASM, GWESM RCAN2 Calcipressin-2 GWASN, GWESM
CPLX1 Complexin-1 GWASM, GWESM RELN Reelin GWASM, GWESM

COL4A2 Collagen alpha-2(IV) chain EWAS, GWASM RPRM Protein reprimo GWASM, GWESM

DAD1
Dolichyl-

diphosphooligosaccharide--
protein

GWASN, GWESM RYR2 Ryanodine receptor 
2

EWAS, GWASM, 
GWESM

FAM107B Protein FAM107B EWAS, GWESM SEMA6A Semaphorin-6A EWAS, GWASM

FHIT Bis(5'-adenosyl)-
triphosphatase GWASD, GWASM SMARCA2

Probable global 
transcription 

activator SNF2L2
GWASM, GWESM

GRM8 Metabotropic glutamate 
receptor 8 GWASM, GWESM SSB

SPRY domain-
containing SOCS 

box protein 2
EWAS, GWESM

IGSF21 Immunoglobulin superfamily 
member 21 EWAS, GWESM STK39

STE20/SPS1-related 
proline-alanine-rich 

protein kinase
EWAS, GWESM

IL17RD Interleukin-17 receptor D GWASM, GWESM TM7SF2 Delta(14)-sterol 
reductase TM7SF2 EWAS, GWESM

LOC102546299 [Uncharacterized] GWASD, GWASM, 
GWASN TMEM14B Transmembrane 

protein 14B GWASM, GWESM

LPCAT1 Lysophosphatidylcholine 
acyltransferase 1 GWASM, GWESM TMEM241 Transmembrane 

protein 241 GWASM, GWESM

MRAP2 Melanocortin-2 receptor 
accessory protein 2 GWASM, GWESM TNS3 Tensin-3 EWAS, GWESM

NCKAP1 Nck-associated protein 1 GWASM, GWESM TRPM3
Transient receptor 
potential cation 

channel subfamily M 
member 3

GWASD, GWASM

NELL1 Protein kinase C-binding 
protein NELL1 GWASM, GWESM TUSC3 Tumor suppressor 

candidate 3 GWASM, GWESM

NELL2 Protein kinase C-binding 
protein NELL2 GWASM, GWESM UBA3

NEDD8-activating 
enzyme E1 catalytic 

subunit
GWASM, GWESM

NOTCH4 Neurogenic locus notch 
homolog protein 4 EWAS, GWASM UNC13C Protein unc-13 

homolog C
GWASD, GWASM, 

GWASN

OFCC1 Orofacial cleft 1 candidate 
gene 1 protein GWASD, GWASM WIF1 Wnt inhibitory 

factor 1 GWASM, GWESM

PCP4 Calmodulin regulator protein 
PCP4 GWASM, GWESM ZCCHC14

Zinc finger CCHC 
domain-containing 

protein 14
EWAS, GWASM

PEX5L PEX5-related protein GWASD, GWASM ZCCHC24
Zinc finger CCHC 

domain-containing 
protein 24

GWASM, GWESM

PFKP
ATP-dependent 

6-phosphofructokinase, 
platelet

EWAS, GWESM ZIC2 Zinc finger protein 
ZIC 2 EWAS, GWESM

Table 2. Main top candidate genes. EWAS: EWAS for MDD; GWASD: GWAS for depressive symptoms; GWASM: GWAS for case-control 
studies of MDD; GWASN: GWAS for neuroticism; GWESM: GWES for MDD.
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A functional enrichment analysis found an enrichment 
of binding-sites for brain-expressed transcription factors 
(Table 3), such as CREB (cAMP responsive element binding 
protein), FOXO1 (forkhead box O1), and ZIC1 (Zinc family 
member 1). In addition, an analysis of the 44 candidate 
genes showed an enrichment of tissue expression as 

well, such as Pituitary and Olfactory Bulb (Table 3). 
A PPI network visualization showed that candidate genes 
for MDD, such as TMEM14B (transmembrane protein 14B) 
and RPRM (reprimo, TP53 dependent G2 arrest mediator 
homolog), play a central role in this network (Figure 2).

Discussion

Epigenetic factors have been of particular interest in the analysis 
of the mechanisms involved in the pathogenesis of MDD, 
considering the possible interaction between genetic factors 
and the environment.6 Multiple epigenome-wide association 
studies for major depression and related phenotypes have been 
carried out and published in recent years.6 A bioinformatic 
analysis of the convergence of results from several available 
EWAS with other genomic evidence10,29,30 (D. A. Forero et 
al., 2017; Niculescu & Le-Niculescu, 2010) can be helpful 
for the identification of novel genes and pathways for MDD. 

In this study, we found integrative evidence for the possible role 
of novel candidate genes and pathways. Key candidate genes 
such as NOTCH4 and SEMA6A were found in convergence 
with those identified in GWAS and GWES. These genes are 
involved in mechanisms of synaptic plasticity, which have been 
associated with several psychiatric disorders.18,31,32 Among 
the candidate genes found in this investigation, genes which 
harbor mutations for neuropsychiatric disorders, such as 
COL4A2 and RELN, have been identified; as well as genes that 
are highly expressed in astrocytes and oligodendrocytes, such 
as TNS3 and FAM107B. Furthermore, binding-sites for brain-
expressed transcription factors, such as FOXO1 and CREB, 
are of particular importance, given the previous evidence 
of involvement in pathophysiology of depression33,34 — with 
genes such as TMEM14B and RPRM observed to play a key 
role in the protein-protein interaction network.

Previously, Uddin et al found a difference in genome-wide 
DNA methylation patterns between unaffected and depressed 
individuals. Functional enrichment showed that methylated 
and unmethylated genes affect brain development, depending 
on specific pathways.35 A study involving post-mortem frontal 
cortex samples found similar results for genes such as CPSF3, 
LASS2 and PRIMA1 having different methylation profiles.36 

Studies with candidate genes have complemented results from 
EWAS for MDD. A study with MDD patients showed higher 
levels of methylation at the BDNF gene.37 Another case-
control study also showed BDNF, FKBP5, CRHBP and NR3C1 
gene promoters to be significantly hypermethylated in MDD.38 

Category Term P value FDR

UCSC_TFBS LHX3 9.39E-05 0.009014
UCSC_TFBS FOXO3 2.92E-04 0.014018
UCSC_TFBS RP58 6.78E-04 0.015651
UCSC_TFBS ISRE 6.83E-04 0.015651
UCSC_TFBS AP2REP 8.15E-04 0.015651
UCSC_TFBS CDPCR3 0.001284 0.01727
UCSC_TFBS FAC1 0.001571 0.01727
UCSC_TFBS CART1 0.001609 0.01727
UCSC_TFBS HNF1 0.001684 0.01727
UCSC_TFBS P53 0.00194 0.01727
UCSC_TFBS IRF2 0.002141 0.01727
UCSC_TFBS SRY 0.002348 0.01727
UCSC_TFBS TGIF 0.002659 0.01727
UCSC_TFBS NFE2 0.002698 0.01727
UCSC_TFBS CREB 0.00319 0.019138
UCSC_TFBS AP1 0.003655 0.019969
UCSC_TFBS IK3 0.004006 0.019969
UCSC_TFBS ZIC1 0.004134 0.019969
UCSC_TFBS SREBP1 0.004247 0.019969
UCSC_TFBS HFH1 0.004501 0.019969
UCSC_TFBS GATA 0.004576 0.019969
UCSC_TFBS CDC5 0.004903 0.020465
UCSC_TFBS TAL1BETAITF2 0.005666 0.022002
UCSC_TFBS CDPCR1 0.00573 0.022002
UCSC_TFBS FOXO4 0.006855 0.025311
UCSC_TFBS STAT3 0.007589 0.026549
UCSC_TFBS BRACH 0.007743 0.026549
UCSC_TFBS AREB6 0.009089 0.028731
UCSC_TFBS FOXO1 0.009868 0.028731
GNF_U133A_
QUARTILE Olfactory Bulb 1.24E-04 0.002084

GNF_U133A_
QUARTILE

Dorsal root 
ganglia 6.72E-04 0.007502

GNF_U133A_
QUARTILE Pituitary 0.005969 0.047689

Table 3. Functional enrichment analysis of top DM candidate genes 
from EWAS for MDD. TFBS:  Transcription Factor Binding Sites; 

GNF_U133A_QUARTILE: Expression in Multiple tissues.
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Figure 2. Protein-protein interaction network for top candidate genes. Top DM candidate genes from EWAS for MDD 
were used. A highly connected subnetwork is shown and candidate genes are highlighted in yellow.

It is important for future MDD EWAS to be carried out 
in other regions of the world (such as Latin America 
or Africa),18 that have millions of depression patients.3

Concerning the meta-analysis performed in this study, a DM 
gene, the FAM53B, was identified; which encodes a protein that 
is necessary to regulate the β-catenin-dependent Wnt signal 
transduction.39 A GWAS has detected a variant in this gene 
as a risk for cocaine dependence in African-and European-
American subjects.40 Additionally, other polymorphisms in 
FAM53B are also associated with MDD and Alzheimeŕ s 
diseases.41 Moreover, in a study that analyzed the effects of 
smoking on DNA methylation, a significant result for 525 
genes including FAM53B was found.42 These findings suggest 
that this gene could play an important role in the molecular 

mechanisms of different brain disorders. Interestingly, FAM53B 
was convergent with the study performed by Crawford, 2018, 
that analyzed DNA methylation in whole blood samples (Table 
S1). Despite the existence of additional EWAS performed 
in whole blood samples for depressive symptoms in middle-
aged and elderly persons,8 its raw data is unavailable 
and it was not possible to include their results in our study.

The number of EWASs included is one of the limitations of 
this study, as several primary EWAS do not have their data 
publicly available. Comprehensive meta-analyses of available 
EWAS could be performed if academic journals request for 
the public availability of such raw data.28,43 Development 
of user-friendly computational tools would also facilitate 
such meta-analyses of large volumes of epigenomic data.44

https://archivosdeneurociencias.org


Arch Neurocien (Mex) Alam Farwah B et al.

 Volume 27, Number 2, year 2022 archivosdeneurociencias.org |  17

References

1. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, 
et al. Major depressive disorder. Nat Rev Dis Primers. 2016; 
2:16065.

2. Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, 
et al. Genetic variants in major depressive disorder: From 
pathophysiology to therapy. Pharmacol Ther. 2019;194:22-43.

3. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the 
global burden of depression from 1990 to 2017: Findings 
from the Global Burden of Disease study. J Psychiatr Res. 
2020;126:134-140.

4. Major Depressive Disorder Working Group of the Psychiatric 
GC, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, 
et al. A mega-analysis of genome-wide association studies for 
major depressive disorder. Mol Psychiatry. 2013;18(4):497-511.

5. Forero DA, Guio-Vega GP, Gonzalez-Giraldo Y. A comprehensive 
regional analysis of genome-wide expression profiles for major 
depressive disorder. J Affect Disord. 2017; 218:86-92.

6. Nagy C, Vaillancourt K, Turecki G. A role for activity-dependent 
epigenetics in the development and treatment of major depressive 
disorder. Genes Brain Behav. 2018; 17(3):e12446.

7. Januar V, Saffery R, Ryan J. Epigenetics and depressive disorders: 
a review of current progress and future directions. Int J Epidemiol. 
2015; 44(4):1364-87.

8. Story-Jovanova O, Nedeljkovic I, Spieler D, Walker RM, Liu C, 
Luciano M, et al. DNA Methylation Signatures of Depressive 
Symptoms in Middle-aged and Elderly Persons: Meta-analysis 
of Multiethnic Epigenome-wide Studies. JAMA psychiatry. 2018; 
75(9):949-59.

9. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific 
model for the correction of brain cellular heterogeneity bias 
and its application to age, brain region and major depression. 
Epigenetics. 2013; 8(3):290-302.

10. Niculescu AB, Le-Niculescu H. Convergent Functional Genomics: 
what we have learned and can learn about genes, pathways, and 
mechanisms. Neuropsychopharmacology. 2010; 35(1):355-6.

11. Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues 
in conducting a meta-analysis of gene expression microarray 
datasets. PLoS medicine. 2008; 5(9):e184.

12. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky 
M, et al. NCBI GEO: archive for functional genomics data sets-
update. Nucleic Acids Res. 2013;41(Database issue):D991-5.

13. Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et 
al. Correlation between DNA methylation and gene expression 
in the brains of patients with bipolar disorder and schizophrenia. 
Bipolar Disord. 2014; 16(8):790-9.

14. Murphy TM, Crawford B, Dempster EL, Hannon E, Burrage J, 
Turecki G, et al. Methylomic profiling of cortex samples from 
completed suicide cases implicates a role for PSORS1C3 in major 
depression and suicide. Transl Psychiatry. 2017; 7(1):e989.

15. Crawford B, Craig Z, Mansell G, White I, Smith A, Spaull S, 
et al. DNA methylation and inflammation marker profiles 
associated with a history of depression. Hum Mol Genet. 2018; 
27(16):2840-50.

16. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for 
gene list integration and meta-analysis. Bioinformatics. 2012; 
28(4):573-80.

17. Võsa U, Kolde R, Vilo J, Metspalu A, Annilo T. Comprehensive 
Meta-analysis of MicroRNA Expression Using a Robust Rank 
Aggregation Approach. In: Alvarez ML, Nourbakhsh M, editors. 
RNA Mapping: Methods and Protocols. New York: Springer New 
York; 2014. 361-73.

18. Forero DA, Guio-Vega GP, González-Giraldo Y. A comprehensive 
regional analysis of genome-wide expression profiles for major 
depressive disorder. J Affect Disord. 2017; 218:86-92.

19. Hek K, Demirkan A, Lahti J, Terracciano A, Teumer A, Cornelis 
MC, et al. A Genome-Wide Association Study of Depressive 
Symptoms. Biol Psychiatry. 2013; 73(7):667-78.

20. Genetics of Personality C. Meta-analysis of Genome-wide 
Association Studies for Neuroticism, and the Polygenic 
Association With Major Depressive Disorder. JAMA psychiatry. 
2015; 72(7):642-50.

21. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen 
G, et al. A mega-analysis of genome-wide association studies for 
major depressive disorder. Mol Psychiatry. 2013; 18(4):497-511.

22. Forero DA, Prada CF, Perry G. Functional and Genomic Features 
of Human Genes Mutated in Neuropsychiatric Disorders. The 
Open Neurology Journal. 2016; 10:143-8.

23. Kelley KW, Nakao-Inoue H, Molofsky AV, Oldham MC. Variation 
among intact tissue samples reveals the core transcriptional 
features of human CNS cell classes. Nat Neurosci. 2018; 
21(9):1171-84.

24. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. 
Nat Protoc. 2009; 4(1):44-57.

25. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-
Bongaarts AL, et al. Canonical genetic signatures of the adult 
human brain. Nat Neurosci. 2015; 18(12):1832-44.

26. Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni 
N, et al. A proteome-scale map of the human interactome 
network. Cell. 2014; 159(5):1212-26.

27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 

https://archivosdeneurociencias.org


Arch Neurocien (Mex) Bioinformatic Analysis of Epigenomic Studies for Major Depressive Disorder

18  | archivosdeneurociencias.org  Volume 27, Number 2, year 2022

et al. Cytoscape: a software environment for integrated models 
of biomolecular interaction networks. Genome Res. 2003; 
13(11):2498-504.

28. Forero DA, González-Giraldo Y. Convergent functional genomics 
of cocaine misuse in humans and animal models. Am J Drug 
Alcohol Abuse. 2020; 46(1):22-30.

29. Forero DA, Gonzalez-Giraldo Y. Integrative In Silico Analysis of 
Genome-Wide DNA Methylation Profiles in Schizophrenia. J Mol 
Neurosci. 2020; 70(11):1887-1893.

30. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel 
SD, et al. Convergent functional genomics of schizophrenia: 
from comprehensive understanding to genetic risk prediction. 
Mol Psychiatry. 2012; 17(9):887-905.

31. Hoseth EZ, Krull F, Dieset I, Morch RH, Hope S, Gardsjord ES, 
et al. Attenuated Notch signaling in schizophrenia and bipolar 
disorder. Sci Rep. 2018; 8(1):5349.

32. Pasterkamp RJ, Giger RJ. Semaphorin function in neural plasticity 
and disease. Curr Opin Neurobiol. 2009; 19(3):263-74.

33. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez 
A, Mariani N, et al. FoxO1, A2M, and TGF-beta1: three 
novel genes predicting depression in gene X environment 
interactions are identified using cross-species and cross-tissues 
transcriptomic and miRNomic analyses. Mol Psychiatry. 2018; 
23(11):2192-208.

34. Blendy JA. The role of CREB in depression and antidepressant 
treatment. Biol Psychiatry. 2006; 59(12):1144-50.

35. Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, 
Galea S. Epigenetic and inflammatory marker profiles associated 
with depression in a community-based epidemiologic sample. 
Psychol Med. 2011;41(5):997-1007.

36. Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, 
Kaufman WE, et al. Genome-wide DNA methylation scan in 
major depressive disorder. PloS one. 2012; 7(4):e34451.

37. Na K-S, Won E, Kang J, Chang HS, Yoon H-K, Tae WS, et al. 
Brain-derived neurotrophic factor promoter methylation and 
cortical thickness in recurrent major depressive disorder. Sci Rep. 
2016; 6(1):21089.

38. Roy B, Shelton RC, Dwivedi Y. DNA methylation and expression 
of stress related genes in PBMC of MDD patients with and without 
serious suicidal ideation. J Psychiatr Res. 2017; 89:115-24.

39. Kizil C, Kuchler B, Yan JJ, Ozhan G, Moro E, Argenton F, et 
al. Simplet/Fam53b is required for Wnt signal transduction by 
regulating beta-catenin nuclear localization. Development. 
2014; 141(18):3529-39.

40. Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, 
Kranzler HR, et al. Genome-wide association study of cocaine 

dependence and related traits: FAM53B identified as a risk gene. 
Mol Psychiatry. 2014; 19(6):717-23.

41. Ni H, Xu M, Zhan GL, Fan Y, Zhou H, Jiang HY, et al. The 
GWAS Risk Genes for Depression May Be Actively Involved in 
Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2018; 
64(4):1149-61.

42. Dogan MV, Beach SRH, Philibert RA. Genetically contextual 
effects of smoking on genome wide DNA methylation. Am J Med 
Genet B Neuropsychiatr Genet. 2017; 174(6):595-607.

43. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman 
P, Stoeckert C, et al. Minimum information about a microarray 
experiment (MIAME)-toward standards for microarray data. Nat 
Genetics. 2001; 29(4):365-71.

44. Forero DA. Available Software for Meta-analyses of Genome-
wide Expression Studies. Curr Genomics. 2019; 20(5):325-31.

© Archivos de Neurociencias

Article without conflict of interest

https://archivosdeneurociencias.org

