

Non-pharmacological intervention on inhibitory control in adolescents with attention-deficit / hyperactivity disorder

Hernández-Torres Daniel ^a | Licona-Oliver Alma ^b

a. Interdisciplinary Research Unit in Health Sciences and Education, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico.

b. Institute of Graduate Studies in Cognitive Behavioral Psychotherapy

Correspondence

Daniel Hernández Torres. Interdisciplinary Research Unit in Health Sciences and Education. Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, State of Mexico, C.P. 54090, Mexico.

 danielht@comunidad.unam.mx

Abstract

One of the main neuropsychological features in Attention-Deficit / Hyperactivity Disorder (ADHD) are the failures in executive functioning, especially inhibitory control (IC), which is important for the stopping of an ongoing response, permits a delay in the decision to respond and protects this period of time. Due to these deficits, teenage population with ADHD are more susceptible to present behaviors such as substance abuse, high-risk sexual behavior and the presence of comorbidities. The aim of the present study was to conduct a review of the last 10 years about the non-pharmacological interventions on IC in adolescents with ADHD. An electronic search was made in Scopus, PubMed and Web of Sciences databases, combining the next keywords: "intervention", "inhibitory control", "adolescents", "teenagers" and "ADHD". Articles were selected from 2010 to 2020. Transcranial magnetic stimulation was the most reported non-pharmacological intervention for enhancing the IC in adolescents with ADHD, followed by physical exercise and neurofeedback. The lack of literature about this topic is a relevant issue to generate future research lines about the treatment of executive functions in adolescents with ADHD.

Keywords: ADHD, executive functions, inhibitory control, non-pharmacological intervention.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020

Introduction

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DMS-5) classifies attention deficit hyperactivity disorder (ADHD) within neurodevelopmental disorders, with a global prevalence of 2% to 7%¹, whereas for kids and adolescents it can reach 5-9% to 7.1%².

The main symptoms considered are the presence of a persistent pattern of inattention and hyperactivity/impulsiveness that interfere in the functioning or development, creating a bigger risk of maladaptive behaviors and the necessity to get immediate rewards, generating the inability to delay gratification¹.

Bandeira³ states that ADHD symptoms appear before the age of 12 and are present in at least two contexts, which persistently creates difficulties throughout life, affecting the social, academic, and work spheres.

ADHD involves alterations to various neurotransmitters, such as serotonin, noradrenalin, and specially dopamine, which influences various processes, such as attention, concentration, motivation, interest, and learning new abilities⁴. Derived from neurobiological deficits that interact with some environmental factors, such as difficulties during pregnancy, drug use, childbirth complications, bad upbringing, and a low socioeconomic status; this makes it so the main difficulties that people with ADHD face manifest in a poor development of the executive functioning⁵.

Executive functions are a set of control processes used when an action is set in motion or when it is not advisable to act on instinct or intuition, allowing for cognitive, social, and psychological success⁷. In this sense, these are crucial skills for learning since they allow the regulation of emotions under stress situations⁸.

One of the main executive failures manifested in ADHD is inhibitory control (IC), which, according to Barkley⁹, is the interrelation of the three following processes: a) the inhibition of the initial prepotent response to an event, b) stopping an ongoing response, which allows for a delay in the decision to respond, and c) the protection of this time period.

Successful inhibition has frequently been linked to areas such as the anterior cingulate cortex, dorsolateral prefrontal cortex, orbitofrontal cortex, and the inferior frontal cortex^{10,11}, extending to the anterior insula, with the latter being found to

activate more broadly and significantly in tasks related to IC¹². Said areas are associated with decision-making, initiation of social behaviors, inhibition of inappropriate behaviors, as well as the risk-benefit processing¹³.

The research is consistent when reporting that people with ADHC make more mistakes during inhibition tasks, have slower reaction times when a conflicting stimulus is presented, and their performance throughout the execution of these tasks is variable^{14,15}.

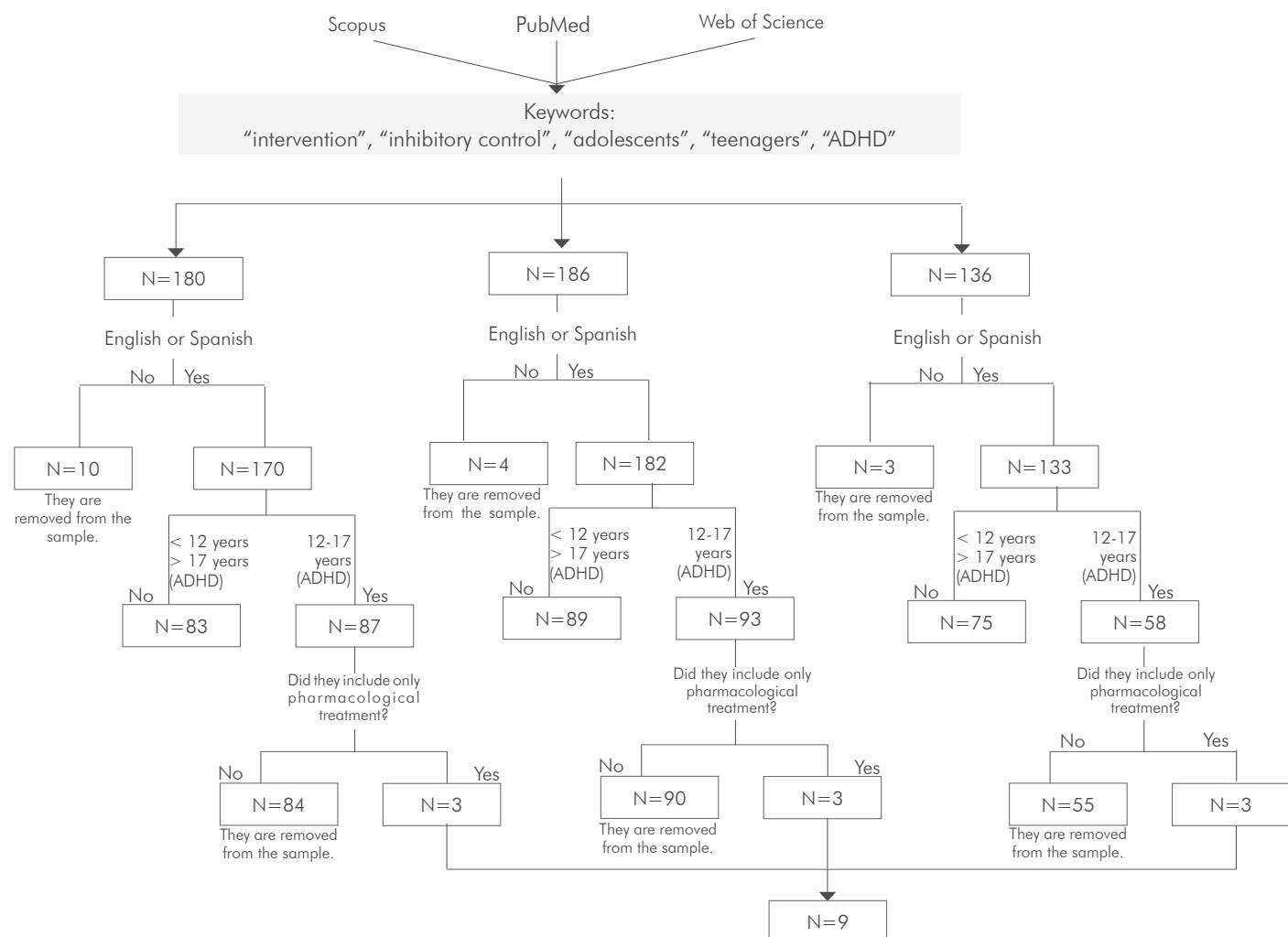
Because of this, it is considered that intervention in ADHD must mainly focus on executive functions to stimulate and train skills such as self-regulation, self-control, planning, and IC¹⁶.

In general, the literature is expensive when reporting comprehensive intervention in children and adolescents with ADHD, mainly involving pharmacological treatment, which reduces the key symptoms in most children and young adults¹⁷⁻¹⁹. However, the literature that covers only the adolescent population is scarce, and there is even less literature addressing one of the main deficits that results in behavioral problems, such as IC, which is of great importance due to the fact that young people with untreated ADHD tend to get involved in high-risk behaviors, such as substance abuse, high-risk sexual behavior, and the presence of comorbidities (e.g., mood disorders and anxiety and personality disorders)¹⁹.

The combined effects of methylphenidate with "response cost" techniques and cognitive training applied to children and adolescents with ADHD have been examined, also resulting beneficial for the decrease of long-term symptoms, primarily in attention, hyperactivity, and impulsivity^{21,22}. Another study on this population reported the benefit of the same drug combined with neurofeedback (NFB), proving that they were able to increase the ability to inhibit prepotent responses to a similar degree, which suggests that both have a "braking" function²².

Despite this, there are few experimental research and meta-analyses that only report the efficiency of non-pharmacological treatments on behavioral inhibition on young people with ADHD. To our knowledge, some recent reviews on the topic cover only one intervention, for example, mindfulness²³ and physical exercise²⁴. However, they are not specific on the effects that they have on IC.

The objective of the present work is to review the non-pharmacological interventions on IC in adolescents with


ADHD to provide a general overview that outlines the strengths and weaknesses of this state of the art in question.

Methods

An electronic search in the Scopus, PubMed, and Web of Science databases was used, combining the following keywords: "intervention," "inhibitory control," "adolescents,"

"teenagers", and "ADHD". Articles from the last 10 years (2010 to 2020) reporting interventions in executive functions (specifically in IC) were selected, as well as those including adolescents (11 to 16 years of age) with ADHD among their sample. Articles analyzing these variables in children or adults, in other clinical populations, and that only reported pharmacological interventions were excluded, ultimately selecting 9 articles.

Figure 1. Flowchart of the procedure for selecting articles on non-pharmacological intervention in inhibitory control in adolescents with ADHD

Results

Of the studies reviewed for this work, four (44.4%) focused on transcranial magnetic stimulation (TMS); three (33.3%) on physical exercise, and two (22.2%) on neurofeedback (NFB). Regarding the studied ages, the nine articles evaluated adolescents of ages ranging between 11.11 to 14.5 years.

TMS

The analyzed studies (Table 1) reported that the values of the N100 amplitude between the clinically healthy group and the ADHD group were similar after TMS, which implies a better response to tasks that demand the use of IC²⁶. Transcranial-direct current stimulation (tDCS) reduces the time needed to select new information through an improvement in inhibition and a decrease in the frequency of mistakes when alternating attention⁴.

When adolescents with ADHD received TMS through only using the anode over the right inferior frontal gyrus, they showed a significant decrease in commission errors and a higher accuracy in reaction times²⁷. Likewise, by using TMS and motor evoked potentials, a decrease in amplitude during the recording of the N100 component was observed, showing a reduction in motor disinhibition, which contributed to hyperactivity in adolescents of the clinical group²⁸.

The IC measures used in these studies were two continuous performance tests (Go/no-go and flankers), the Neuropsychological Development Assessment (NEPSY-II) IC subtest and a contingent negative variation task as a neurophysiological measure of IC. The three studies showed large effect sizes.

Table 1. Studies reporting intervention in inhibitory control through TMS in adolescents with ADHD.

Authors	Groups of participants and age in years (Mean and standard deviation)	Inhibitory control measures (IC)	Intervention technique used	Results
D'Agati E., et al., ²⁵	ADHD: 12.5 (1.0) n= 18 Control: 12.4 (1.3) n=19	Go/no-go paradigm	TMS over the left motor cortex. Electroencephalographic activity was recorded at 22 sites (using the 10-20 system without C3, e.g., the electrode under the TMS coil, Fpz, Oz, M1 and M2).	After TMS, during the Go/no-go task, participants with ADHD showed a smaller increase in N100 amplitude on go trials and a better response inhibition capacity.
Bandeira ID, et. al. ³	ADHD: 11.11 (2.8) n= 9	NEPSY-II IC subtest	TMS over the left dorsolateral prefrontal cortex (anode at F3) and the right supraorbital area (cathode).	Se redujo el tiempo necesario de selección de información nueva mediante una mejoría en la inhibición y un decremento en la frecuencia de errores al alternar la atención
Breitling C., et. al. ²⁶	ADHD: 14.33a n = 21 Control: 14.24a n = 21	Eriksen Flanker Paradigm	TMS over the right inferior frontal gyrus with the stimulation electrode (anode) at F8 site and the reference electrode (cathode) at P7 site posterior to the left mastoid.	The anodal TMS over the right inferior frontal gyrus improved the IC in patients with ADHD.
Bruckmann S., et. al. ²⁷	ADHD: 11.4 (1.7) n= 20 Control: 12.2 (2.0)n=19	Negative contingent variation task	tDCS over the left motor cortex choosing C3 site for the electroencephalographic response.	A decrease in N100 amplitude was shown, indicating a qualitative difference with the control group regarding the typical motor inhibition of this disorder.

Note: TMS = Transcranial magnetic stimulation; NEPSY-II = Neuropsychological Development Assessment. a = Does not provide the standard deviation of age, only the mean; tDCS= Transcranial direct-current stimulation.

Physical Exercise

In two studies (Table 2) it was reported that, in adolescents with ADHD, doing moderate-intensity exercise on a recumbent bicycle (stationary) for 20 to 30 minutes can improve the performance on IC tasks, such as the Stroop test, even after only one exercise session ²⁹, showing an increase in the P300 amplitude and a decrease in reaction times ³⁰.

Finally, an intervention proved that two weekly 50-minute sessions for a year and a half has a favorable effect on IC of adolescents with ADHD, resulting in large effect sizes measured through the performance on all variables of the Stroop test ³¹.

Table 2. Studies reporting intervention in inhibitory control through physical exercise in adolescents with ADHD.

Authors	Groups of participants and age in years (Mean and standard deviation)	Inhibitory control measures (IC)	Intervention technique used	Results
Piepmeyer A.T., et. al. ²⁸	ADHD: 11.32 (1.96) n = 14 Control: 11.22 (2.43) n = 18	Stroop test	30-minute acute exercise routines for 2 days	Patients with and without ADHD improved their processing speed and IC in response to a session of moderate exercise
Ludyga, et. al. ²⁹	ADHD: 12.8 (1.8) n = 5 Control: 13.5 (1.38) n = 7	Flanker task	Aerobic and coordination exercise for 20 minutes for 7-14 days	The results suggest that a single session of aerobic exercise improves the IC and attentional control. There were indications that aerobic exercise was more efficient than coordinated exercise in reducing deficits in inhibitory control in the ADHD group.
Kadri A., et. al. ³⁰	ADHD: 14.5 (3.5) n = 40	Stroop test	50-minute taekwondo exercises two times a week for a year and a half	Significant differences and large effect sizes were observed in the pre- and post-intervention assessments in the Stroop test, indicating an improvement in IC and in the selective attention of adolescents with ADHD.

NFB

The findings in the pair of articles found (Table 3) suggest that NFB is a technique that improves the performance of IC in children and adolescents with ADHD. Specifically, one of the studies with large effect sizes³² claims that after 20 training sessions with this technique, the key symptoms of the ADHD group were reduced, improving IC measured through the performance in a combined flanker task/No-Go.

In the second study, the use of NFB together with real-time functional magnetic resonance imaging is reported over the course of four 1.5-hour sessions for 2 weeks, during which ADHD symptoms decreased, the level of sustained attention and IC improved, and an increase in the activation of the superior frontal gyrus was found in response to IC tasks in adolescents with ADHD.

Table 3. Studies reporting intervention in inhibitory control through NFB in adolescents with ADHD.

Authors	Groups of participants and age in years (Mean and standard deviation)	Inhibitory control measures (IC)	Intervention technique used	Results
Baumeister S., et. al. ³¹	ADHD: 11.81 (1.47) n = 16	flanker/No-Go task (4 blocks of 40 trials)	20 60-minute NFB sessions	The group that received NFB showed a reduction in ADHD symptoms and an increase in the activation of areas associated with IC.
Alegria A.A., et. al. ⁴⁷	ADHD: 14.11 (1.53) n = 18 Control: 13.62 (1.66) n = 13	MARS battery and CPT Go/No-Go and Stop.	NFB through functional magnetic resonance imaging in 4 ½-hour sessions for 2 weeks	ADHD symptoms were reduced, the level of sustained attention improved, and there was an increase in the activation of the superior frontal gyrus during IC tasks.

Notes: NFB = Neurofeedback; MARS = Maudsley Attention and Response Supresion task battery; CPT = Continuous Performance Test.

Discussion

The obtained results based on the 9 studies indicated that the most used method was TMS, followed by physical exercise, and finally NFB.

Overall, when using NFB to stimulate some regions of the frontal lobe (mainly the primary motor cortex, the left dorsolateral prefrontal cortex, and the right inferior frontal gyrus) a decrease in disinhibition²⁶ better capacity to select new information⁴, better interference control²⁷ and an improvement in motor inhibition²⁸ in adolescents with ADHD were observed. Despite the existence of studies that indicate that TMS is a non-pharmacological alternative for ADHD treatment, given the fact that it is non-invasive, effective³³⁻³⁶, and allows for the activation of prefrontal circuits that enhance dopaminergic neurotransmission³⁷, the consulted research has reported side effects mainly related to headaches, neck pain, tingling at the site of the anode, itching, burning sensation, local redness, and mild drowsiness⁴, which could be considered a short-term limitation for the long-term use of this intervention in some patients.

Regarding physical exercise, recent studies cover mainly two types of activities: acute exercise through the use of recumbent bicycles, and taekwondo. In the case of the former, the evidence is consistent regarding the beneficial effects of acute exercise on cognitive performance, particularly on executive functions³⁸⁻⁴⁰. However, the topic has not been studied much in populations with ADHD and focuses mainly on children.

The most used instrument in the articles that report interventions through physical exercise is the Stroop test, observing a higher speed and a lower number of mistakes prior to the intervention process, which is consistent with what Chang et al. report⁴⁰. They observed a better performance on part C (interference) of the Stroop test in children with ADHD after moderate exercise sessions. On the other hand, the use of taekwondo has resulted in a recent interest in research due to the many benefits it entails in the cognition and behavior⁴¹⁻⁴⁴, as well as in executive functions such as working memory, cognitive flexibility, and IC⁴⁵, but not much has been studied on children and adolescents with ADHD.

Given the above, the limitations are noteworthy as other types of physical activities, such as tai chi, which has proven to be beneficial to young people with ADHD, as it decreases anxiety and improves behavior and emotions⁴⁶, have not been explored.

Finally, it has been reported that NFB, which is a type of electroencephalogram that trains self-regulation skills through computerized technology⁴⁷, has been associated with the decrease of ADHD-related symptoms^{32,48}.

In general, the pair of articles that were found about this type of intervention suggest that NFB is efficient for improving IC in adolescents with ADHD, mainly when they execute continuous performance tests such as go/no-go and stop, showing a significant increase in the activation of structures associated with IC (such as the bilateral insula, inferior frontal gyrus, and the anterior and medial cingulate cortex), regions that have also been associated with reward-based learning^{49,50} and are hypoactive in patients with ADHD⁵¹, suggesting that this type of intervention would not only improve IC, but also other executive functions, such as decision-making and cognitive flexibility.

Conclusions

The main objective of the present study was to conduct a literature review of the past 10 years about the different non-pharmacological interventions to improve the IC of adolescents with ADHD. Unlike previous studies, where the effects of interventions through physical exercise or NFB have been independently reviewed, there is no systematic review or meta-analysis (to our knowledge) that focuses only on the adolescent population and describes more than two non-pharmacological interventions to improve the executive function of the IC.

TMS turned out to be the most reported intervention of the past 10 years, which has shown that by stimulating the frontal cortex (mainly the dorsolateral prefrontal cortex), improvements in interference control, selection capacity, attention, and IC have been observed. On the other hand, physical exercise and NFB have also been beneficial for improving IC. However, the literature found about these last two types of intervention is still scarce.

The instruments used in most of the studies to evaluate the IC are some continuous performance tests such as go/no-go, stop, and the flanker task, as well as the Stroop test, which is important when designing a battery of standardized neuropsychological tests that evaluate the three processes involved in IC: (a) the inhibition of the initial prepotent response to an event, b) stopping an ongoing response, and c) the protection of a delay period, as said functions are compromised in ADHD patients.

Given the few reports found, it is important for future research to consider the behavioral responses and changes in different executive functions using measures that not only focus on experimental paradigms, but also on new standardized tests and ecological assessments through inventories or questionnaires in self-report and peer-report versions.

Finally, it is suggested that the research on executive functions convers the adolescent population and the way in which neurodevelopmental disorders such as ADHD impact the IC. This is because of the research into the topic in question being relatively new.

References

1. APA. Diagnostic and statistical manual of mental disorders: DSM-5. Fifth Edit. Washington, D. C.: American Psychiatric Publishing; 2013.
2. Willcutt EG. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. *Neurotherapeutics*. 2012; 9(3):490–9. <https://doi.org/10.1007/s13311-012-0135-8>
3. Bandeira ID, Guimarães RSQ, Jagersbacher JG, Barreto TL, De Jesus-Silva JR, Santos SN, et al. Transcranial Direct Current Stimulation in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD). *J Child Neurol*. 2016; 31(7):918–24. <https://doi.org/10.1177/0883073816630083>
4. Chmielewski WX, Tiedt A, Bluschke A, Dippel G, Roessner V, Beste C. Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. *NeuroImage Clin*. 2018;19: 527–37. <https://doi.org/10.1016/j.nicl.2018.05.019>
5. Sonuga-Barke E, Brandeis D, Holtmann M, Cortese S. Computer-based Cognitive Training for ADHD. A Review of Current Evidence. *Child Adolesc Psychiatr Clin N Am*. 2014; 23(4):807–24. <https://doi.org/10.1016/j.chc.2014.05.009>
6. Diamond A. Executive functions. *Annu Rev Psychol*. 2013;64:135–68. <https://doi.org/10.1146/annurev-psych-113011-143750>
7. Cybèle Raver C, Blair C. Neuroscientific insights: Attention, working memory, and inhibitory control. *Futur Child*. 2016; 26(2):95–118. <https://files.eric.ed.gov/fulltext/EJ1118545.pdf>
8. Chevrier A, Schachar RJ. BOLD differences normally attributed to inhibitory control predict symptoms, not task-directed inhibitory control in ADHD. *J Neurodev Disord*. 2020;12(1):1–12. <https://doi.org/10.1186/s11689-020-09311-8>
9. Barkley RA. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. *Psychol Bull*. 1997; 121(1):65–94. <https://doi.org/10.1037/0033-2909.121.1.65>
10. MenonV, Adleman N, White C, Glover G, Reiss A. Error-related brain activation during a Go/NoGo response inhibition task. *Hum Brain Mapp*. 2001; 12(3):131–43. DOI: 10.1002/1097-0193(200103)12:3<131::aid-hbm1010>3.0.co;2-c
11. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. *Cogn Affect Behav Neurosci*. 2007;7(1):1–17. <https://doi.org/10.3758/cabn.7.1.1>
12. Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. *NeuroImage*. 2011; 56(3):1655–65. <http://dx.doi.org/10.1016/j.jneurosci.2011.02.070>
13. Anderson P. Towards a developmental model of executive function. In: Anderson P, Anderson V, Jacobs R, editors. *Executive Functions and the Frontal Lobes: a Lifespan Perspective*. New York: Psychology Press; 2008, 3–21.
14. Uebel H, Albrecht B, Asherson P, Börger NA, Butler L, Chen W, et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. *J Child Psychol Psychiatry Allied Discip*. 2010; 51(2):210–8. <https://doi.org/10.1111/j.1469-7610.2009.02139.x>
15. Geurts HM, Van Der Oord S, Crone EA. Hot and cool aspects of cognitive control in children with ADHD: Decision-making and inhibition. *J Abnorm Child Psychol*. 2006; 34(6):813–24. <https://doi.org/10.1007/s10802-006-9059-2>
16. Abad-Mas L, Ruiz-Andrés R, Moreno-Madrid F, M. Angeles S-C, Marcel C, Ivan D D-M, et al. Entrenamiento de funciones ejecutivas en el trastorno por déficit de atención/hiperactividad. *Rev Neurol*. 2011; 52(S01): S077-83
17. Thapar A, Cooper M. Attention deficit hyperactivity disorder. *Lancet*. 2016; 387(10024):1240–50. [https://doi.org/10.1016/S0140-6736\(15\)00238-X](https://doi.org/10.1016/S0140-6736(15)00238-X)
18. Faraone S V., Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. *Nat Rev Dis Prim*. 2015;1. DOI: 10.1038/nrdp.2015.20
19. Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Modifiers of long-term school outcomes for children with attention-deficit/hyperactivity disorder: Does treatment with stimulant medication make a difference? Results from a population-based study. *J Dev Behav Pediatr*. 2007; 28(4):274–87. DOI: 10.1097/DBP.0b013e3180cabc28
20. Wolraich M, Brown L, Brown RT, DuPaul G, Earls M, Feldman HM, et al. ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/ hyperactivity disorder in children and adolescents. *Pediatrics*. 2011;128(5):1007–22. <https://doi.org/10.1542/peds.2011-2654>
21. Gerber WD, Gerber-Von Müller G, Andrasik F, Niederberger U, Siniatchkin M, Kowalski JT, et al. The impact of a multimodal Summer Camp Training on neuropsychological functioning in children and adolescents with ADHD: An exploratory study. *Child Neuropsychol*. 2012; 18(3):242–55. <https://doi.org/10.1080/09297049.2011.599115>
22. Bluschke A, Friedrich J, Schreiter ML, Roessner V, Beste C. A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. *NeuroImage Clin*. 2018; 20:1191–203. doi: 10.1016/j.nicl.2018.10.027
23. Cairncross M, Miller CJ. The Effectiveness of Mindfulness-Based Therapies for ADHD: A Meta-Analytic Review. *J Atten Disord*. 2020;24(5):627–43. DOI: 10.1177/1087054715625301
24. Vynniauske R, Verburgh L, Oosterlaan J, Molendijk ML. The Effects of Physical Exercise on Functional Outcomes in the Treatment of ADHD: A Meta-Analysis. *J Atten Disord*. 2020;24(5):644–54. <https://doi.org/10.1177/1087054715627489>
25. D'Agati E, Hoegl T, Dippel G, Curatolo P, Bender S, Kratz O, et al. Motor cortical inhibition in ADHD: Modulation of the transcranial magnetic stimulation-evoked N100 in a response control task. *J Neural Transm*. 2014;121(3):315–25. <https://doi.org/10.1007/s00702-013-1097-7>
26. Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeekers J, Flechtnner HH, et al. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). *Front Cell Neurosci*. 2016;10:1–10. <https://doi.org/10.3389/fncel.2016.00072>

27. Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, et al. Cortical inhibition in attention deficit hyperactivity disorder: New insights from the electroencephalographic response to transcranial magnetic stimulation. *Brain*. 2012;135(7):2215–30. <https://doi.org/10.1111/jcpp.12312>

28. Piepmeyer AT, Shih CH, Whedon M, Williams LM, Davis ME, Henning DA, et al. The effect of acute exercise on cognitive performance in children with and without ADHD. *J Sport Heal Sci*. 2015; 4(1):97–104. <https://doi.org/10.1016/j.jshs.2014.11.004>

29. Ludyga S, Brand S, Gerber M, Weber P, Brotzmann M, Habibifar F, et al. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. *Dev Cogn Neurosci*. 2017; 28:21–8. <https://doi.org/10.1016/j.dcn.2017.10.007>

30. Kadri A, Slimani M, Bragazzi NL, Tod D, Azaiez F. Effect of taekwondo practice on cognitive function in adolescents with attention deficit hyperactivity disorder. *Int J Environ Res Public Health*. 2019;16(2):1–10. <https://doi.org/10.3390/ijerph16020204>

31. Baumeister S, Wolf I, Holz N, Boecker-Schlier R, Adamo N, Holtmann M, et al. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning? *Neuroscience*. 2018; 378:89–99. <https://doi.org/10.1016/j.neuroscience.2016.09.025>

32. Spieser L, van den Wildenberg W, Hasbroucq T, Richard Ridderinkhof K, Burle B. Controlling your impulses: Electrical stimulation of the human supplementary motor complex prevents impulsive errors. *J Neurosci*. 2015; 35(7):3010–5. <https://doi.org/10.1523/JNEUROSCI.1642-14.2015>

33. Loftus AM, Yalcin O, Baughman FD, Vanman EJ, Hagger MS. The impact of transcranial direct current stimulation on inhibitory control in young adults. *Brain Behav*. 2015;5(5):1–9. <https://doi.org/10.1002/brb3.332>

34. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? *Neuropharmacology* [Internet]. 2013;64:566–78. <http://dx.doi.org/10.1016/j.neuropharm.2012.06.020>

35. Krause B, Cohen Kadosh R. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. *Dev Cogn Neurosci*. 2013; 6:176–94. <http://dx.doi.org/10.1016/j.dcn.2013.04.001>

36. Bush G. Attention-deficit/hyperactivity disorder and attention networks. *Neuropsychopharmacology*. 2010; 35(1):278–300. <http://dx.doi.org/10.1038/npp.2009.120>

37. Chang YK, Chu IH, Chen FT, Wang CC. Dose-response effect of acute resistance exercise on tower of London in middle-aged adults. *J Sport Exerc Psychol*. 2011;33(6):866–83. <https://doi.org/10.1123/jsep.33.6.866>

38. Chang YK, Tsai CL, Hung TM, So EC, Chen FT, Etnier JL. Effects of acute exercise on executive function: A study with a Tower of London task. *J Sport Exerc Psychol*. 2011; 33(6):847–65. <https://doi.org/10.1123/jsep.33.6.847>

39. Chang YK, Liu S, Yu HH, Lee YH. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. *Arch Clin Neuropsychol*. 2012; 27(2):225–37. <https://doi.org/10.1093/arclin/acr094>

40. Van Dijk GP, Huijts M, Lodder J. Cognition improvement in Taekwondo novices over 40. Results from the SEKWONDO Study. *Front Aging Neurosci*. 2013; 5: 1–5. <https://doi.org/10.3389/fnagi.2013.00074>

41. Cho SY, Kim Y II, Roh HT. Effects of taekwondo intervention on cognitive function and academic self-efficacy in children. *J Phys Ther Sci*. 2017;29(4):713–5. <https://doi.org/10.1589/jpts.29.713>

42. Lakes KD, Hoyt WT. Promoting self-regulation through school-based martial arts training. *J Appl Dev Psychol*. 2004;25(3):283–302. doi.org/10.1016/j.appdev.2004.04.002

43. Kim YJ, Cha EJ, Kim SM, Kang KD, Han DH. The effects of taekwondo training on brain connectivity and body intelligence. *Psychiatry Investig*. 2015;12(3):335–40. <https://doi.org/10.4306/pi.2015.12.3.335>

44. Lakes KD, Bryars T, Sirisinahal S, Salim N, Arastoo S, Emmerson N, et al. The Healthy for Life Taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. *Ment Health Phys Act*. 2013; 6(3):181–8. <http://dx.doi.org/10.1016/j.mhpa.2013.07.002>

45. Hernandez-Reif M, Field TM, Thimas E. Attention deficit hyperactivity disorder: Benefits from Tai Chi. *J Bodyw Mov Ther*. 2001; 5(2):120–3. <https://doi.org/10.1054/jbmt.2000.0219>

46. Hammond DC. Neurofeedback Around the World. *J Neurother*. 2008;10(4):25–36.

47. Alegria AA, Wulff M, Brinson H, Barker GJ, Norman LJ, Brandeis D, et al. Real-time fMRI neurofeedback in adolescents with attention deficit hyperactivity disorder. *Hum Brain Mapp*. 2017; 38(6):3190–209. <https://doi.org/10.1002/hbm.23584>

48. Sonuga-Barke EJS, Fairchild G. Neuroeconomics of attention-deficit/hyperactivity disorder: Differential influences of medial, dorsal, and ventral prefrontal brain networks on suboptimal decision making? *Biol Psychiatry*. 2012; 72(2):126–33. <http://dx.doi.org/10.1016/j.biopsych.2012.04.004>

49. McGuire JT, Nassar MR, Gold JL, Kable JW. Functionally Dissociable Influences on Learning Rate in a Dynamic Environment. *Neuron*. 2014; 84(4):870–81. <http://dx.doi.org/10.1016/j.neuron.2014.10.013>

50. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. *Neurosci Biobehav Rev*. 2014; 38:125–34. <http://dx.doi.org/10.1016/j.neubiorev.2013.07.012>

Artículo sin conflicto de interés

© Archivos de Neurociencias